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ABSTRACT 

A Comparison of Two Common Classification Procedures for Economical 

Urban Land Cover Mapping using NAIP Imagery 

 

 

Kent Lowell Simons 

Department of Geography 

Master of Science 

 

 

Detailed urban land cover maps are increasingly useful and important applications of remote 

sensing. Municipal agencies and others use land cover maps and data for numerous critical local 

planning and monitoring functions and for urban geographical research studies. Because of this, 

there is a demand for accurate urban land cover maps that can be produced quickly and 

economically. The availability of very high resolution multispectral imagery is an important 

factor in enabling such production, as the judicious selection of source imagery has a large impact 

on the resulting map products. Likewise, the implementation of appropriate digital image 

processing methods is crucial for deriving urban land cover maps of acceptable accuracy and 

cost. This study compared two common image classification algorithms using 2006 NAIP 1-

meter GSD CIR images of Orem and Provo, Utah. The two classification procedures – 

conventional per-pixel supervised classification coupled with post-classification filtering, and 

object-based feature extraction – were compared for resulting accuracy and, in general terms, for 

their cost-effectiveness. Results demonstrated that object-based feature extraction has the  
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potential to produce maps with better accuracy, but at a somewhat higher cost than per-pixel 

supervised classification. Classification errors and their probable causes are discussed; also a 

number of options for improving the classification accuracy are presented together with 

considerations of the potential costs involved. Although the ultimate goal of economical 

production of accurate urban land cover maps was not fully realized, this study nevertheless has 

established a cost containment baseline upon which methodological improvements can be built.  
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A Comparison of Two Common Classification Procedures for 

Economical Urban Land Cover Mapping using NAIP Imagery 

 

 

 

INTRODUCTION 

Municipal government agencies are primary users of urban land cover data and maps. These 

agencies have responsibility and purview over local concerns that typically include urban 

planning and development, local environmental monitoring and management, transportation 

planning, utilities and services, recreation and parks, environmental justice, public health, 

emergency planning and management, urban forestry, and so forth. Accurate and timely maps of 

urban land cover can be important sources of information useful to municipal agencies and others 

for analysis and decision support in all these application areas and perhaps more. 

However, acquisition of useful land cover maps can be problematic for municipal 

governments. Practical issues such as budget constraints and inadequate in-house technical 

capabilities may limit the ability of agencies to produce or otherwise obtain the type of land cover 

map products they need. Ideally, maps of urban land cover should be affordable and relatively 

easy to produce or acquire, while providing acceptable accuracy in their thematic content. 

Whether map products are created in-house by the agency itself or are acquired through a 

procurement process from a geospatial mapping services provider, the end goal is the same: high 

quality, temporally relevant, cost-effective maps that meet the agency‟s needs. 

Historically, the production of detailed land cover data for urban areas has been a labor- and 

time-intensive endeavor (Fitzpatrick-Lins, 1981; Mathieu, Aryal, & Chong, 2007). It required 

skilled personnel to perform visual interpretation of aerial photographs and/or obtain extensive in 

situ field data measurements. With the goal of drastically reducing human labor costs, researchers 
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during the past 20 years have developed digital processing algorithms that harness computer 

power to semi-automatically create GIS-ready map layers from remotely sensed data. 

Nevertheless, it is interesting to contemplate whether or not the objective has actually been 

realized. Indeed, the question may be asked: Are high quality, cost-effective maps of urban land 

cover being routinely produced on an operational basis for use by municipal agencies today? 

Evidence supporting an affirmative answer to this question seems to be lacking. 

Two critical factors – source imagery and processing methods – are at the nexus of the 

decision process for producing usable urban land cover maps. Other factors will also exert 

influence, but these two key elements must be selected and executed effectively for there to be a 

reasonable prospect of achieving the goal. The recent proliferation of options for source imagery 

and processing algorithms makes this decision process non-trivial and possibly confusing for 

municipal agencies and others who desire to move forward with programs that require current 

land cover maps. 

Numerous methods have been developed to create accurate urban land cover maps from 

remotely sensed data. However, many of these methods utilize relatively complex and/or 

experimental algorithms and computationally-intensive processing steps, or require extensive and 

detailed preparation of knowledge bases, expert rules, etc. A large percentage of research studies 

reported in the literature were exclusively focused on accuracy as their core concern; most of 

these virtually ignored issues of cost and operational viability. Similarly, a variety of remotely 

sensed imagery are available that have potential for use in creating urban land cover maps. Some 

studies noted in the literature used source imagery that is either costly and/or difficult to acquire, 

or not of appropriate resolution for detailed urban applications. Unfortunately, the issue of careful 

selection of source imagery and processing methods for creating urban land cover maps has often 

been dealt with only superficially in the research literature. 

In the specific context of this study it was necessary to narrow the problem to a manageable 

scope. It was not feasible to test every existing type of source imagery, nor was it possible to test 
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every type of processing method mentioned in the literature. Fortunately, comprehensive, 

exhaustive tests were not necessary: information available in the literature has helped to focus and 

refine realistic choices for imagery and methods. Some researchers have addressed imagery 

characteristics including spatial resolution, spectral resolution and band selection, temporal 

concerns, pre-processing, and even cost issues, that are germane to selection of imagery for urban 

applications (e.g., Aplin, 2003; Herold, Gardner, Hadley, & Roberts, 2002; Walker & Blaschke, 

2008). Likewise, many researchers have tackled processing methods and results with respect to 

their relevancy for detailed urban studies and applications (e.g., Thomas, Hendrix, & Congalton, 

2003; Yuan & Bauer, 2006). 

Based on such prior work, this study selected source imagery and processing methods that 

are considered to be viable candidates for economical production of accurate urban land cover 

maps. The source images selected are US National Agricultural Imagery Program (NAIP) 1-

meter GSD CIR scenes of Orem and Provo, Utah. Two competing processing methods have been 

selected: 1) per-pixel supervised classification coupled with post-classification filtering; and 2) 

object-based feature extraction. 

Research Questions and Hypotheses 

The research questions addressed in this study are: 

1. Is NAIP 1-meter CIR imagery a useful and appropriate selection of source data for 

urban land cover mapping? 

2. Can conventional per-pixel supervised classification produce urban land cover maps 

of usable accuracy, and can application of post-classification filters improve the 

accuracy? 

3. Can object-based feature extraction result in better accuracy than supervised 

classification, and if so what are the additional costs in analyst time and computer 

processing time? 
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To address these questions, this research has two related hypotheses: 

1. Object-based feature extraction will create a more accurate urban land cover map 

than per-pixel supervised classification, using the same NAIP CIR imagery as source 

data for both methods. 

2. The object-based feature extraction procedure will require more investment in 

analyst/operator time and computer processing time than the supervised classification 

procedure. 

In this study, the first hypothesis was tested using standard accuracy assessment methods 

and metrics including error/confusion matrices, overall accuracy, and the Kappa statistic (Foody, 

2002). The second hypothesis was tested by recording and reporting the elapsed times required by 

the analyst and the computer to perform each step of the candidate procedures. The time 

measurements served as proxies for cost metrics and were used to inform a general discussion of 

the cost-effectiveness of the two methods. 

Significance of this Research 

The purpose of this study was not to develop any new technology or advance new theory. 

Rather, an applied research approach was adopted in an effort to further the practical application 

of remote sensing to help solve local urban geographical issues. There is an apparent gap between 

achievements in research laboratory settings and what actually becomes operational in real-world 

problem-solving situations (Steering Committee on Space Applications and Commercialization, 

2001). Efforts are needed to help transition research results into the development of viable 

applications that can deliver tangible benefits to communities and their residents. 
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LITERATURE REVIEW 

Because land cover classification and mapping has been one of the foremost areas of remote 

sensing research for at least 30 years, the research literature in this area is plentiful.  However, 

studies involving detailed urban applications of land cover have mostly come about only in the 

past 8-10 years, which generally corresponds to the advent of very high resolution satellite data. 

The following subsections review and discuss concepts found in the literature that are particularly 

relevant to the research questions of this study. 

Development of Remote Sensing for Urban Land Cover Mapping 

The first known overhead remotely sensed image was a crude aerial photograph taken from a 

hot air balloon over the city of Paris in 1858 (J. R. Jensen, 2007, p. 67). It was therefore also the 

first case of urban remote sensing. However, automated derivation of detailed urban thematic 

maps from remotely sensed imagery is very much a contemporary science. The demand for 

detailed urban geographical studies has intensified in the past two decades or so, due to 

worldwide trends in rapid urbanization and accompanying concerns about environmental impacts 

and sustainable growth (Andersson, 2006; Maktav, Erbek, & Jurgens, 2005). This increase in 

demand has, in turn, driven much research in urban geography and especially development of 

remote sensing capabilities aimed at providing the detailed data and information needed to better 

manage urban growth and its accompanying concerns (Longley, 2002). Simultaneously, dramatic 

improvements in computer processing power including both hardware capabilities and image 

processing software algorithms have occurred in recent years. Also, just in the last 8-10 years, 

very high spatial resolution (4 meter and finer) commercial satellite imagery has become 

available (Stoney, 2007). This convergence of information demand, computer processing power, 

and high resolution imagery in the past decade has fueled dramatic developments in detailed 

urban land cover and land use research and applications. 
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Before further consideration of recent developments, a brief look back is needed. Aerial 

reconnaissance of military targets, beginning in World War I and progressing throughout the 20
th
 

century, laid the basic groundwork for later civilian applications of urban remote sensing (J. R. 

Jensen, 2007, pp. 74-80). Analog aerial photography dominated non-military remote sensing 

before the launch of the first Landsat satellite in 1972 (then known as Earth Resource Technology 

Satellite). Visual photo interpretation was practically the only viable processing methodology 

prior to development of effective computer-based processing. Techniques to quantify and map 

land cover usually employed sampling and statistical methods, and oftentimes manual drafting or 

digitizing of thematic boundaries (Fitzpatrick-Lins, 1981; Nowak et al., 1996). These techniques 

were labor/cost-intensive, non-synoptic, and reliant on human interpretations, thus highly variable 

and not able to be standardized. 

The series of Landsat satellites launched by NASA starting in 1972 were the first orbital 

platforms put into operation with capability of providing global-coverage imagery for civilian 

research and applications. The first three Landsat satellites were equipped with the Multispectral 

Scanner (MSS) instrument which produced digital images in five spectral bands with 79-meter 

spatial resolution. Landsat 4 (launched 1982) and 5 (launched 1984) carried the Thematic Mapper 

(TM) sensor which imaged the earth surface at 30-meter spatial resolution in 7 spectral bands. 

After failure of the Landsat 6 mission, Landsat 7 was launched in 1999 with the Enhanced 

Thematic Mapper Plus (ETM+) sensor on board, which provides 7-band multispectral imagery at 

30-meter spatial resolution and adds a panchromatic band at 15-meter resolution (J. R. Jensen, 

2007, pp. 198-211; Stoney, 2007). The Landsat program has continued to provide earth imagery 

long past its expected lifespan. 

The Landsat program has had immeasurable influence on the science of thematic mapping in 

general and land cover mapping in particular. It was designed and primarily used for medium-

scale observations of the earth‟s surface for environmental studies, and has been used for 

uncounted regional studies and applications (e.g., Vogelmann, Sohl, Campbell, & Shaw, 1998). 
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The availability of the satellite data spurred many avenues of research into image processing and 

made possible numerous applications of earth imagery. The US Geological Survey (USGS) 

sponsored the first proposed standard for land use/land cover classification systems, spurred by 

the increase in interest and research in this area (Anderson, Hardy, Roach, & Witmer, 1976). 

Despite the relatively poor (by today‟s standards) spatial resolution, some researchers even began 

to apply MSS and TM data to urban geographical problems (e.g., J. R. Jensen, 1979). The MSS 

and TM data could not resolve details of urban scenes; nevertheless it was the best satellite data 

available and researchers developed methods such as Spectral Mixture Analysis (SMA) in efforts 

to understand sub-pixel level details of land cover in urban areas. The majority of useful digital 

image processing techniques for land cover classification were initially developed and tested 

during the era of Landsat TM data. Even now, Landsat data continues to be used in applications 

such as urban change detection/analysis (e.g., Xian & Crane, 2005), as the archival imagery is the 

most consistent multi-date data source available. 

In the meantime, aerial imagery capabilities and usage also progressed, although somewhat 

in the shadow of interest in satellite-based remote sensing. In the period of the 1980‟s and 1990‟s, 

aerial imagery moved into the digital era. Photographic film gradually was superseded by digital 

sensors. These became more precise and were coupled with airborne inertial navigation systems 

and then GPS capabilities. Aerial imagery was able to provide very high spatial resolution data 

well-suited for detailed urban studies long before any satellite systems could do so. For example, 

a landmark study of urban ecology and human-environmental systems was performed in Salt 

Lake City, Utah, in the early-mid 1990‟s using high resolution color-infrared aerial imagery 

(Ridd, 1995). 

Another important development occurred in the 1990‟s with the introduction of imaging 

spectrometry or hyperspectral systems (J. R. Jensen, 2007, p. 241). These sensors, such as 

NASA‟s Airborne Visible Infrared Imaging Spectrometer (AVIRIS), provided very high spectral 

resolution data, sometimes with over 200 very narrow bands. Researchers began using 
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hyperspectral imagery for urban research and applications because of its ability to make fine 

distinctions between similar urban land cover materials (Herold, Gardner, Hadley, & Roberts, 

2002; Roessner, Segl, Heiden, & Kaufmann, 2001). The spatial resolution of hyperspectral data 

sometimes is not as fine as multispectral aerial imagery, which can be a limitation for some 

applications; nevertheless hyperspectral imagery will continue to be an important and valuable 

data source for urban studies into the future (Gamba & Dell'Acqua, 2007). 

The launch and operation of new higher-resolution satellites starting in late 1999 with 

IKONOS-2 signaled another milestone in urban mapping development. The IKONOS instrument 

provides multispectral imagery with 4-meter spatial resolution and a 1-meter panchromatic band. 

Then in 2001 the QuickBird satellite became operational and began delivering imagery with sub-

meter panchromatic resolution, and multispectral bands with nominal 2.44-meter resolution 

(Stoney, 2007). Even before the IKONOS launch, in anticipation of these very high resolution 

satellite data becoming available, some researchers performed simulation experiments to evaluate 

the performance of this type of imagery for urban land cover mapping purposes (Aplin, Atkinson, 

& Curran, 1999). A marked increase in research and development of urban remote sensing 

applications can be linked directly to availability of very high spatial resolution satellite imagery 

beginning less than 10 years ago. 

The confluence of technological developments with the demand for better urban 

geographical studies in just the past 10 years is remarkable. Geographical tools and systems we 

now take (almost) for granted have not been around for very long: high resolution imagery, 

sophisticated digital image processing systems, un-restricted GPS signals and devices, modern 

integrated GIS software and geospatial databases, and computer processing power – these have 

all gained significant maturity and integration in less than a decade. They are all being applied to 

help solve problems of rapid urban growth and sprawl, urban environmental and ecological 

issues, and other urban quality-of-life and sustainability concerns. 
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Principal Uses of Urban Land Cover Maps 

The following subsections review several categories of applications of urban land cover 

maps that are noted in the research literature. 

Change Detection/Analysis 

Detailed land cover maps are commonly used to perform post-classification change 

detection, analysis, and/or modeling. Urban growth and sprawl is a significant concern for many 

communities throughout the world, and using multi-temporal land cover data is a valuable device 

for detecting and thus better understanding its extent and effects on an urbanizing area. As 

mentioned by textbook authors (e.g., J. R. Jensen, 2005, p. 482), post-classification analysis is 

often the preferred change detection procedure, and requires as input two (or more) accurately 

classified maps. For example, a study in the Puget Sound area of Washington used medium-

resolution Landsat ETM+ imagery from 1991 and 1999 to create two classified land cover maps 

used to perform a change comparison and analysis (Alberti, Weeks, & Coe, 2004). In another 

wide-ranging study, areas in the city of Baltimore, Maryland, and several medium-sized towns in 

China were analyzed to determine urban ecological changes over time (Ellis et al., 2006); a 

combination of source imagery was used to first map land cover using a very detailed ecotope-

based classification system, then a change analysis revealed fine-scale landscape ecotope 

changes. Another study examined urbanization in the Tampa Bay, Florida, watershed and used 

land cover data derived from 1991 and 2001 imagery as input to a cellular automata growth 

model to predict future urban growth patterns (Xian & Crane, 2005). A recent study used the 

Baltimore, Maryland, metropolitan area as a test-bed for examining object-based land cover 

classified maps as input to an object-based change analysis procedure (W. Zhou, Troy, & Grove, 

2008). In a broadly-based position paper, Aspinall (2002) discussed and proposed a 

comprehensive data & analytical infrastructure in which land cover data and maps are central to 

the envisioned change analysis and modeling processes. These examples, among others, highlight 
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the importance of accurate land cover maps in performing detailed post-classification change 

analysis for urban areas.  

Urban Planning 

In a related vein, accurate and timely maps of urban land cover are useful to help inform 

urban planning activities, and to support sustainable development policies and practices. Urban 

planners fundamentally need to know what is “on the ground” now, before they can make rational 

decisions about future development options and plans. As an example, researchers at the 

University of Connecticut reported sharing research results (including land cover maps) with 

local municipal officials as an aid in land use planning decisions (Civco, Hurd, Wilson, Arnold, 

& Prisloe, 2002); the provided land cover data included information on impervious surface 

measurements, forest fragmentation, and urban growth/sprawl. Another research study, 

performed in Korea, reported performing analyses of land cover changes for the express purpose 

of informing regional sustainable development planning and policy (X. Chen, 2002). In a 

positional article, Maktav, Erbeck, & Jurgens (2005) called for increased use of remote sensing-

derived maps in areas experiencing rapid urbanization (especially in developing countries) as a 

means to support and inform better urban planning and sustainable development. A recent study 

in China used ASTER imagery and an object-based methodology to map land cover for the city 

of Beijing (Y. Chen, Shi, Fung, Wang, & Li, 2007). Transportation system origins and 

destinations have been analyzed for travel distances and accessibility based on land cover types 

mapped from remote sensing imagery (Wang & Trauth, 2006). Finally, the report of a workshop 

entitled “Earth Observation for Urban Planning and Management” discussed then-current state of 

the art and made a number of recommendations for enhanced application of remote sensing for 

urban planning purposes; included are specific ideas for increased usage of accurate, detailed 

urban land cover maps (Nichol et al., 2007). 
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Urban Ecological Studies 

Awareness and study of urban environmental and ecological concerns has increased greatly 

in recent decades, paralleling the global urban growth trend. Accurate and timely maps of urban 

land cover can play an important role in assessing and monitoring urban ecological health. A 

recent article on urban ecology discussed the use of “spatially explicit data” integrated with socio-

economic data layers, to help assess urban ecology and ecological services (Andersson, 2006). In 

his landmark study, Ridd (1995) put forward the V-I-S (vegetation-impervious-soil) model (a 

form of land cover map) as an approach to the study of human ecosystems, urban biophysical 

systems, and urban morphology. Several other studies have emphasized the role of vegetation in 

urban environments and so focused their remote sensing classification work to extract and 

highlight urban vegetation cover and its distribution (Buyantuyev, Wu, & Gries, 2007; Conway & 

Hackworth, 2007; Hashiba, Tanaka, & Sugimura, 2006; Myint, 2006; Nichol & Lee, 2005; Small, 

2001). Creation and use of a detailed urban land cover map for biodiversity assessment and 

modeling was at the center of another study (Mathieu, Aryal, & Chong, 2007), and a recent study 

in Minnesota created detailed land cover maps to analyze urban change and to model impacts on 

the local environment (Yuan, 2008). In another paper that is focused on urban ecosystems, the 

authors devise and advance a hierarchical classification system that is intended to facilitate 

interdisciplinary research in human-natural heterogeneous systems (Cadenasso, Pickett, & 

Schwarz, 2007). 

Irrigation Assessment 

Growing cities located in more arid climatic regions are challenged to supply irrigation water 

for residences, parks, golf courses, commercial enterprises, etc. Land cover maps (sometimes 

supplemented with land use data) have been used to quantify the areal extent of irrigated 

vegetation within a city‟s scope of responsibility as a means to address current and future water 

needs (Stow et al., 2003). 
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Urban Forestry 

Urban forests are an important sub-set of urban vegetation and have often been treated 

independently due to the special environmental properties of city trees. Accordingly, the 

measurement and assessment of urban forests is an important use of detailed land cover maps 

derived from remote sensing. Early articles (Nowak et al., 1996; Sacamano, McPherson, Myhre, 

Stankovich, & Weih, 1995) reported on methods for measuring the urban forest that relied on 

visual interpretation of aerial photographs or videography and statistical sampling methods. An 

updated study discussed the use of AVHRR and Landsat TM data, but still used statistical 

methods to estimate urban forest cover as a substitute for creating land cover maps (Nowak, 

Noble, Sisinni, & Dwyer, 2001). Another study, performed in Germany, used high resolution 

aerial CIR imagery coupled with an experimental texture detection algorithm to extract and map 

trees in Berlin, Germany, but this approach ignored other types of land cover (Zhang, 2001). 

More recently, in a Baltimore, Maryland, study that analyzed distributions of urban trees, the 

researchers employed manual heads-up digitizing of high resolution IKONOS multispectral data 

to derive land cover map fragments of selected sample neighborhoods (Grove et al., 2006). 

Another study, done in Phoenix, Arizona, used true color aerial digital imagery and an object-

based automated classification procedure to map the urban forest (Walker & Briggs, 2007). From 

these examples one can infer the value of a high quality urban land cover map that would provide 

detailed data about the urban forest (along with all other classes of land cover). 

Impervious Surfaces 

Impervious surfaces are another important class of land cover that has been the focus of 

study by a number of researchers. These surfaces (i.e., pavements, building roofs, etc.) are 

indicative of human settlements and altered natural land cover regimes, and they affect changes in 

storm water runoff, groundwater resources, water quality, etc. In one study the researchers used a 

variety of high resolution imagery and a combination of processing methods to derive maps of 
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imperviousness, from which several municipal uses were discussed including calculating storm 

water runoff per parcel (J. R. Jensen, Hodgson, Tullis, & Raber, 2005). Another study done for 

the city of Scottsdale, Arizona, mapped impervious surfaces to model storm water runoff and 

potential flood impact areas (Thomas, Hendrix, & Congalton, 2003). The effects on water quality 

from runoff pollution sources have been discussed as important uses of land cover maps that 

detail impervious surfaces (Hester, Cakir, Nelson, & Khorram, 2008; Park & Stenstrom, 2008; 

Sawaya, Olmanson, Heinert, Brezonik, & Bauer, 2003; Yuan & Bauer, 2006). Furthermore, 

engineering work to design storm water drainage systems requires the determination of an areal 

runoff coefficient value, which can be calculated based on impervious surface map data 

(Thanapura et al., 2007). 

Urban Heat Island 

The land cover of an urban area, particularly the balance between vegetation and impervious 

surfaces, has been shown to be correlated to the urban heat island effect. Remotely sensed 

imagery has been used to create land cover data needed for various analytical approaches to 

measuring and monitoring the urban heat island (Akbari, Rose, & Taha, 2003; Gluch, Quattrochi, 

& Luvall, 2006; Myint, Mesev, & Lam, 2006; Weng & Lu, 2008).  

Population Estimation 

There is often a need to estimate current population for a given area in the interim period 

between censuses. Toward this end, a recent study examined the statistical relationship between 

housing unit density and land cover types based on land cover metrics derived from a 

classification of remotely sensed imagery (Hardin, Jackson, & Jensen, 2008). 

Input for Additional Analysis 

As mentioned or implied already, sometimes an urban land cover map is not an end-product 

in itself but can be valuable input for further analyses and integration with other datasets. An 

important example is the case where a land use map is to be derived from a land cover map 
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(Aplin, 2003; Barr & Barnsley, 2000; Herold, Scepan, Muller, & Gunther, 2002) (also, see 

discussion below on the distinction between land use and land cover). Another example is where 

multi-temporal land cover maps are a key data source used to build dynamic urban growth 

models (Aspinall, 2002; Civco et al., 2002; Hardin, Jackson, & Otterstrom, 2007; Xian & Crane, 

2005). Several studies have integrated land cover maps with socio-economic data to study quality 

of life (R. R. Jensen, Gatrell, Boulton, & Harper, 2004; G. Li & Weng, 2007), environmental 

justice (R. R. Jensen, Gatrell, Boulton, & Harper, 2005), and relationships between human and 

natural features in urban environments (Grove et al., 2006; Mennis, 2006). 

Clearly, detailed maps of urban land cover can be used for a variety of valuable applications. 

It is interesting to observe that in many of the examples cited in the literature, researchers were 

first obliged to create one or more land cover maps as a prelude to their ultimate study objectives. 

If such a thing as standardized, timely, and accurate land cover maps already existed for a given 

urban study area, advanced research work could simply leverage them as a trusted data source 

rather than needing to create such „from scratch‟ from source remote sensor data. 

Land Cover, Land Use, and Classification Schemes 

The terms land cover and land use are related but not synonymous. Several definitions have 

been offered for these terms (Briassoulis, 2000; J. R. Jensen, 2005, p. 340). Land cover is more 

fundamental: it refers to structural elements/features/materials on or very near the surface of the 

earth with no regard for how human beings use them. On the other hand, land use is the way that 

land cover types have functional meaning for human usage. For example, a land cover class may 

be „grass‟, but a land use definition might be interpreted to be „residential lawn‟, „golf course‟, or 

„city park‟. Similarly, „building‟ or „roof‟ is a land cover class, but when a structure is identified 

as „single-family home‟, „apartment building‟, or „commercial building‟, then those are land use 

labels. An important distinction is that land cover can be directly classified from remote sensing 

imagery, but land use usually cannot. Land use must be interpreted or inferred using land cover, 
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neighborhood contextual clues, and human a priori knowledge (Aplin, 2003; Briassoulis, 2000; 

Mesev, 2003). 

Unfortunately, land use and land cover have not always been clearly distinguished from each 

other in classification research reported in the literature. A number of studies used classification 

schemes with mixed land cover and land use classes (Aitkenhead & Dyer, 2007; X. Chen, 2002; 

Choi & Usery, 2004; Herold, Liu, & Clarke, 2003; Myint, Wentz, & Purkis, 2007; Park & 

Stenstrom, 2008; Platt & Goetz, 2004; Platt & Rapoza, 2008; Pozzi & Small, 2005; Wentz, 

Stefanov, Gries, & Hope, 2006; Xu & Gong, 2007). On the other hand, clear distinctions between 

land cover and land use have been made by many researchers, and several have emphasized the 

inferential nature of deriving the latter from the former (Aplin, 2003; Barr & Barnsley, 2000; 

Cadenasso et al., 2007; Herold, Scepan et al., 2002; Mesev, 2003).  

Land cover classification schemes are devised to help transform remote sensor data into 

useful thematic information. As outlined by J Jensen (2005, p. 341), a successful classification 

system should be mutually exclusive (no taxonomic overlap of classes, i.e., each class is distinct), 

exhaustive (nothing omitted, no resulting unclassified areas), and hierarchical (multi-level 

structure that defines sub-classes and super-classes). The set of classes selected for use in a 

classification scheme become the labels used on the legend of the resulting thematic map. 

A number of land classification schemes have been designed and promulgated as standards 

(Anderson et al., 1976; Cadenasso et al., 2007; J. R. Jensen, 2005, pp. 340-349). One of the first 

widely implemented standard schemes was Anderson et al (1976) under the auspices of the US 

Geological Survey. The Anderson or USGS classification system is hierarchical and combines 

both land use and land cover classes. Levels I and II were designed for use with low to medium 

resolution data (such as Landsat MSS or TM) at regional and continental scales, not for highly 

detailed urban studies. The National Land Cover Dataset 2001 (Homer et al., 2007) employs this 

classification scheme. Levels III and IV of the Anderson scheme can be useful at local/urban 

scales. 
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The landmark study by Ridd (1995) introduced the vegetation-impervious-soil or V-I-S 

model. While Ridd‟s paper was not explicitly about mapping urban land cover, it nevertheless has 

influenced thinking on urban land cover classification systems. The simplicity of the V-I-S model 

enhances its utility, and it has been used as a base for other urban classification schemes (e.g., 

Phinn, Stanford, Scarth, Murray, & Shyy, 2002). 

Some research has employed vegetation indices in various forms, the most common of 

which are the Normalized Differential Vegetation Index (NDVI) and Leaf Area Index (LAI). 

NDVI or LAI have sometimes been used as a substitute for land cover classification. In studies 

that have used vegetation indices, actual land cover classes are often inferred from and/or 

statistically correlated with index values (Conway & Hackworth, 2007; R. R. Jensen et al., 2004; 

Thanapura et al., 2007). 

Detailed classification of urban areas requires a classification system that matches the fine-

scale heterogeneity of city features. In their paper, Cadenasso, Pickett, & Schwartz (2007) 

propose a new classification scheme named High Ecological Resolution Classification for Urban 

Landscapes and Environmental Systems (HERCULES) that is designed specifically for detailed 

urban land cover applications. This is a simple, flexible, hierarchical system that explicitly 

separates structure (land cover) from function (land use). A few recent urban land cover studies 

have used HERCULES or a variant/extension of it (Grove et al., 2006; W. Zhou et al., 2008). 

The number of classes used in a classification scheme seems to be inversely related to the 

resulting accuracy of a classified map: using fewer general classes tends to higher accuracies, 

while using many detailed classes can be a factor in lower accuracies (Jain & Jain, 2006). 

Specialized classified maps, such as for urban forest or imperviousness mapping, typically divide 

the feature space into just two classes and thus can achieve fairly high accuracy (Yuan & Bauer, 

2006; Zhang, 2001). Land cover maps intended for more general purpose uses need 

comprehensive representative classes, but in order to realize acceptable accuracies the number of 

classes should be kept  as small as possible. 
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Selection of Imagery for Detailed Urban Mapping 

Remotely sensed imagery comes from sensors onboard aerial (sub-orbital) or satellite 

(orbital) platforms. Images are either panchromatic (a single band covering all visible 

wavelengths), multispectral (a few wide bands usually including at least blue, green, red, and 

near-infrared portions of the spectrum), or hyperspectral (many narrow bands covering the visible 

spectrum and continuing into near-, middle-, and sometimes thermal-infrared wavelengths). In 

addition to traditional passive optical imagery, other sensors can provide RADAR or LIDAR 

actively-acquired data. Some remote sensor data are produced and made available by government 

entities, and some are provided by private commercial firms. Some data can be custom 

acquired/produced on a contractual paid basis. Some data are available at no cost, some at 

nominal cost, and some are relatively expensive. For all practical purposes today, all these data 

are available in digital format, but they are in a variety of file types and structures.  

From among the plethora of options decisions need to be made about what data may be best 

suited for a particular purpose. The problem of selecting imagery for creating urban land cover 

maps is non-trivial. Key issues and characteristics of the data must be weighed including: spatial, 

spectral, radiometric, and temporal resolution, availability and cost of the imagery, and what 

types of preprocessing have already been done or may need to be done. It is highly unlikely that 

all of these factors can be optimized simultaneously (Baltsavias & Gruen, 2003). 

Spatial Resolution 

A widely-accepted rule of thumb states that for a remote sensor to detect a feature, the 

nominal spatial resolution of the sensor should be less than one-half the size of the feature (J. R. 

Jensen & Cowen, 1999). This is especially important in urban remote sensing applications: the 

instantaneous field of view (IFOV) or pixel size needs to be fine enough to resolve objects in the 

urban scenes that are required by end-use applications. 
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As pertaining to detailed urban remote sensing, Welch (1982) is frequently cited by later 

authors (e.g., Aplin, 2003) as setting the standard for spatial resolution. In that paper, Welch 

suggested that resolutions of 0.5 to 10 meters IFOV would be required to adequately resolve 

features found in urban scenes, and that some cities (especially in Asian areas) might need even 

finer spatial resolution. For many years only aerial imagery could satisfy this requirement – it was 

not until 1999 with the successful deployment of IKONOS-2 that commercial satellite systems 

began to deliver imagery of less than 10 meters spatial resolution (Stoney, 2007). 

Notwithstanding Welch‟s recommendation, however, many researchers from the 1980‟s 

even up to the present time have used imagery of relatively coarse spatial resolution to study 

urban land cover (see Table 1). Characteristics other than spatial resolution – such as spectral 

properties, availability, synoptic coverage, temporal revisit times, etc. – have sometimes made 

coarse resolution satellite data attractive/suitable for some urban purposes. Of course, prior to the 

availability of IKONOS data, researchers had limited options: they could use either fine-scale 

aerial imagery, or coarser resolution satellite data. 

 

 

Table 1: Examples of remote sensor data used for urban land cover studies (m = meter, pan = 

panchromatic, m/s = multispectral, h/s =  hyperspectral) 

Aerial or 

Satellite Sensor 

Spatial 

Resolution Sample Studies 

Satellite Landsat MSS 79m m/s (J. R. Jensen, 1979) 

Satellite Landsat TM 30m m/s (Alberti et al., 2004; X. Chen, 2002; Guindon, 

Zhang, & Dillabaugh, 2004; Phinn et al., 2002; 

Platt & Goetz, 2004; Pozzi & Small, 2005; 

Small, 2001; Stefanov, Ramsey, & Christensen, 

2001; Stuckens, Coppin, & Bauer, 2000; Wentz 

et al., 2006; Yang, Xian, Klaver, & Deal, 2003; 

Yuan, Sawaya, Loeffelholz, & Bauer, 2005) 

Satellite Landsat ETM+ 15m pan, 

30m m/s 

(Alberti et al., 2004; Buyantuyev et al., 2007; 

Civco et al., 2002; Conway & Hackworth, 2007; 

Hardin et al., 2008; Islam & Metternicht, 2005; 

G. Li & Weng, 2007; Lu & Weng, 2004, 2005; 

Mennis, 2006; Myint, 2006; Park & Stenstrom, 

2008; Song, Civco, & Hurd, 2005; Weng & Lu, 

2008; Wu & Murray, 2003; Xian & Crane, 

2005; Yang et al., 2003; Zoran et al., 2008) 
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Satellite EO-1 Hyperion 

hyperspectral 

10m pan, 

30m h/s 

(Xu & Gong, 2007) 

Satellite SPOT HRV 10m pan, 

20m m/s 

(Amarsaikhan, Ganzorig, Ache, & Blotevogel, 

2007) 

Satellite ASTER 15m m/s (Y. Chen et al., 2007; R. R. Jensen et al., 2004; 

Y. Li & Gong, 2006; Stefanov & Netzband, 

2005) 

Satellite IKONOS 1m pan, 

4m m/s 

(Baltsavias & Gruen, 2003; Dare, 2005; Davis 

& Wang, 2002; Ellis et al., 2006; Grove et al., 

2006; Hashiba et al., 2006; Herold, Gardner et 

al., 2002; Herold et al., 2003; Herold, Scepan et 

al., 2002; Jain & Jain, 2006; J. R. Jensen et al., 

2005; Mathieu et al., 2007; Nichol & Lee, 2005; 

Platt & Rapoza, 2008; Repaka, Truax, Kolstad, 

& Hara, 2004; Sawaya et al., 2003; Small, 2003; 

Stow et al., 2003; Wang & Trauth, 2006; Zoran 

et al., 2008) 

Satellite QuickBird 0.6m pan, 

2.5m m/s 

(Carleer & Wolff, 2006; Dare, 2005; Gamba & 

Dell'Acqua, 2007; Hashiba et al., 2006; J. R. 

Jensen et al., 2005; Repaka et al., 2004; 

Schutzberg, 2008; Thanapura et al., 2007; Van 

de Voorde, De Genst, & Canters, 2007; Yuan, 

2008; Yuan & Bauer, 2006) 

Satellite ERS-2 C-band, 

JERS-1 L-band 

RADAR 

26m,    

18m 

(Amarsaikhan et al., 2007) 

Aerial panchromatic <1m (Choi & Usery, 2004) 

Aerial true color m/s <1m - 4m (Akbari et al., 2003; Aplin, 2003; Aplin et al., 

1999; Baltsavias & Gruen, 2003; Barr & 

Barnsley, 2000; Ellis et al., 2006; Hodgson, 

Jensen, Tullis, Rierdan, & Archer, 2003; Huang, 

Shyue, Lee, & Kao, 2008; J. R. Jensen et al., 

2005; Nowak et al., 2001; Nowak et al., 1996; 

Phinn et al., 2002; Thomas et al., 2003; Walker 

& Blaschke, 2008; Walker & Briggs, 2007; 

Wentz et al., 2006) 

Aerial CIR m/s <1m - 4m (Cadenasso et al., 2007; Nichol & Lee, 2005; 

Ridd, 1995; Zhang, 2001; Q. Zhou, Li, & 

Kurban, 2008) 

Aerial hyperspectral 3m - 10m (Gamba & Dell'Acqua, 2007; Gluch et al., 2006; 

Herold, Gardner et al., 2002; Platt & Goetz, 

2004; Roessner et al., 2001) 

Aerial LIDAR n/a (Baltsavias & Gruen, 2003; Hodgson et al., 

2003; Huang et al., 2008; J. R. Jensen et al., 

2005; G. Zhou & Kelmelis, 2007) 

 

One of the main problems with coarse resolution imagery for urban classification is the 

prevalence of non-pure, or spectrally-mixed pixels, where more than one land cover class or 
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feature might be represented by the reflectance values of the pixels. Finer resolution imagery 

reduces but does not eliminate this problem. Very high spatial resolution images contain a 

relatively larger proportion of spectrally pure pixels; however, other problems such as increased 

noise are usually introduced with finer resolution scenes. Some researchers have asserted that 

higher resolution data actually reduces classification accuracy, but this remains a controversial 

claim and seems to be very dependent on classification methods, class schemes, and other factors 

(Myint, 2003). 

Some sensors provide both panchromatic and multispectral data (e.g., IKONOS), with the 

pan imagery at finer spatial resolution. A preprocessing technique known as image fusion or pan-

sharpening has been used to combine the higher spatial resolution of the pan layer with the 

spectral properties of the multispectral bands (Ehlers, 2007). Studies that have done this with 

IKONOS imagery obtained 1-meter spatial resolution multispectral data (Davis & Wang, 2002; 

Ellis et al., 2006; Jain & Jain, 2006); QuickBird users have obtained sub-meter multispectral 

imagery (Hester et al., 2008; Van de Voorde et al., 2007). However, Ehlers (2007) points out that 

most pan-sharpening techniques change the spectral data values of the multispectral bands in the 

process of fusing them with the panchromatic layer, thus introducing spectral uncertainty and 

possible errors.  

Aerial imagery provides very high resolution data and has been used for decades for urban 

mapping applications. Aerial imagery was the only viable source for resolving fine details of 

urban scenes before IKONOS and QuickBird data become available and it continues to have an 

important role. The United States federal government has implemented several programs 

featuring aerial imagery, notably the National Aerial Photography Program (NAPP) and the 

National Agricultural Imagery Program (NAIP), both of which were intended to provide regular 

synoptic coverage of the country (USDA, 2005; USGS, 1991). Of these, the NAIP program is 

more recent, and provides 1-meter digital image scene files in both true color (RGB) and color-

infrared (CIR) multispectral formats. States, counties, and cities also commission aerial 
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photography missions from time to time to update land information, and these high spatial 

resolution data may be available through local government geospatial data clearinghouses. 

A blue-ribbon panel commissioned by the American Society for Photogrammetry and 

Remote Sensing (ASPRS) created an advisory report to the US Geological Survey on the subject 

of digital aerial orthoimagery (ASPRS, 2006). This report endorsed the position that aerial 

“orthoimagery is the most cost-effective of all GIS layers in terms of information content, and is 

the basis of a geospatial program” (p. 100).  Further, the report recommended that the federal 

government sponsor and fund continuous programs to acquire nationwide aerial orthoimagery at 

1-meter (sparsely settled areas), 1-foot (moderate density areas), and 6-inch (high density urban 

areas) resolutions (p. 107). 

In summary, source imagery for urban land cover mapping is required to be of very high 

spatial resolution in order to resolve the heterogenous details of urban features. For a general 

purpose urban land cover map, the required spatial resolution should probably be no greater than 

two meters, and preferably one meter or less. 

Spectral Resolution 

Spectral information plays a vital role in image classification. Indeed, conventional per-pixel 

classification algorithms rely exclusively on spectral reflectance values. In the context of urban 

remote sensing, high spectral resolution principally means using many discrete bands of spectral 

data to help differentiate land cover materials from each other (Herold, Gardner et al., 2002; 

Herold, Schiefer, Hostert, & Roberts, 2007). In general, the fewer spectral bands used, the harder 

it may be to discriminate between the spectral profiles/signatures of specific land cover materials. 

As a practical matter for the purpose of detailed urban land cover mapping, a choice must be 

made between using multispectral data and hyperspectral (also known as imaging spectrometry) 

data, and then selecting which available spectral bands to use in the classification. 
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A paper that was published before very high spatial resolution imagery was widely available 

suggested that high spectral resolution is generally less important for urban mapping applications 

than high spatial resolution (J. R. Jensen & Cowen, 1999). However, that assertion was 

challenged recently in a study that analyzed the relative contributions of high spatial and high 

spectral resolution to overall classification accuracy (Gamba & Dell'Acqua, 2007). Very high 

spatial resolution imagery of urban areas reveals comparatively greater variety of surface 

materials, and the within-class spectral variance of many cover types is also dramatically 

increased. Thus, greater spectral resolution can help with finer discrimination of urban land cover 

materials in very high resolution imagery. 

Unfortunately, the combination of very high spatial resolution and very high spectral 

resolution is physically difficult to achieve by remote sensors. The available electro-magnetic 

energy reflected from earth surface materials is gathered by a sensor and divided up among the 

bands being imaged. A panchromatic image can have extremely fine spatial resolution because all 

the available energy is concentrated into one very wide band for each pixel. Multispectral sensors 

divide the reflected energy into several (typically 3 to7) separate bands of medium spectral width, 

thus the total energy is split up and a larger ground IFOV or pixel size is required in order to 

gather sufficient energy to register a useful image at each pixel. Hyperspectral remote sensing 

acquires reflectance data in many narrow spectral bands (dozens to hundreds of bands), but since 

the electro-magnetic energy is divided among the many bands, each band receives only a small 

fraction of the total available energy. Therefore, the ground IFOV or spatial area of each pixel 

must be large enough to gather sufficient energy to register a useful signature in each band for 

each pixel. Due to the underlying physics principles, therefore, it is usually not possible to have 

both very high spectral and spatial resolution simultaneously in the same remotely sensed data – 

especially from orbital sensors. 

The few available satellite hyperspectral sensors do not provide sufficient spatial resolution 

for detailed urban mapping applications. However there are many hyperspectral sensors used in 
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airborne platforms (such as AVIRIS, CASI, DAIS, HyMap, etc.) and these predominate in the 

literature (e.g., Herold et al., 2007). Examples of studies that have used hyperspectral data for 

urban land cover discrimination are shown in Table 1. Still, in many cases even airborne 

hyperspectral sensors cannot provide sufficient spatial resolution for certain urban applications. 

In addition, use of hyperspectral imagery usually involves more complicated processing than 

does multispectral data (Herold et al., 2007; J. R. Jensen, 2005, pp. 433-457). Few commercial 

software packages are capable of processing hyperspectral data effectively. Selection of useful 

bands is more complex and data-reduction techniques such as principal components analysis 

(PCA) may need to be performed (Herold, Gardner et al., 2002; Xu & Gong, 2007). Therefore, 

users of hyperspectral data for urban land cover mapping will likely face challenges in analysis of 

the data. 

Data/image fusion has been done for the purpose of increasing the spectral resolution of 

remotely sensed imagery. In one study, SPOT optical imagery was combined with satellite 

RADAR InSAR data to increase the number of bands useful for land cover differentiation 

(Amarsaikhan et al., 2007). In a recent Minnesota study, researchers combined pan-sharpened 

QuickBird imagery with aerial NAIP images to obtain 7 useful bands at 1-meter spatial 

resolution, and reported enhanced accuracy and other benefits of using the multiple bands (Yuan, 

2008). 

Aerial digital imagery is typically acquired in 3 or 4 spectral bands. The visible spectrum is 

captured in blue, green, and red wavelength bands, and a near-infrared (NIR) band may also be 

imaged. The NIR channel is especially important for discriminating healthy vegetation (Davis & 

Wang, 2002; W. Zhou et al., 2008) and is required for calculating vegetation indices such as 

NDVI or LAI. It is common for aerial digital imagery to provide three bands: either visible RGB 

(called true color imagery), or red and green from the visible spectrum plus NIR. This latter 

combination of multispectral bands is usually referred to as false-color, color-infrared, or CIR. 
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Imagery available from the US NAIP program is available as both true color and CIR data 

(USDA, 2005). 

In summary, detailed urban land cover mapping needs to differentiate between the various 

land cover materials found in urban scenes. Use of many spectral bands (higher spectral 

resolution) helps with this, but should not be at the expense of adequate spatial resolution. As a 

minimum requirement, CIR imagery with NIR, red, and green bands can be used, and if more 

useful bands are available at high spatial resolution then they will likely help to improve the 

classification accuracy. 

Temporal Resolution 

In the context of urban land cover mapping, temporal resolution of imagery is primarily 

concerned with the frequency of acquiring updated source data. This determines a map‟s temporal 

relevance – i.e., how current a land cover map is, or how frequently it can be updated or re-

created. Many urban areas are experiencing rapid growth and change, so a land cover map could 

become outdated quickly, losing accuracy and thus value over time. Urban planning activities in 

particular need to have current and reliable land cover data.  

Various update cycles for urban mapping needs have been recommended, generally ranging 

from 2 to 5 years (ASPRS, 2006, p. 101). Given that urban parcel developmental cycles can occur 

in one year or less (J. R. Jensen & Cowen, 1999) it may be that municipalities experiencing high 

rates of rapid growth could demand updates to land cover maps as frequently as one year 

intervals. 

Virtually all satellite sensors can readily fulfill the requirement for frequent updates of 

source imagery. In the category of very high resolution systems, IKONOS has a revisit period of 

less than 3 days, and QuickBird from 1 to 5 days (J. R. Jensen, 2007, p. 235). Of course, poor 

atmospheric conditions over a given urban area (cloud cover, etc.) during a satellite‟s imaging 

pass often result in unusable imagery for many dates throughout the year. Nevertheless, the 
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likelihood of finding cloud-free imagery from these satellite sensors for multiple dates within a 

year is high. 

The temporal frequency of custom-flown aerial imaging missions is dependent on budgets 

and the availability/scheduling of capable contractors, and also by local weather conditions. 

Theoretically (with no budget constraints) aerial urban imagery could be updated on demand or as 

often as desired. In practical reality, of course, annual municipal budgets may not include costs 

for aerial imagery very often, so the update cycle may be quite sporadic and for some 

communities may be non-existent. 

Aerial programs sponsored and paid for by state or federal funds may offer the promise of 

regular updates. The NAIP program, for example, was established with the goal of synoptic 

coverage of the conterminous United States every 2 to 3 years on a state-by-state rotating basis 

(USDA, 2005). Its performance to date has not quite achieved the intended goal, as renewal of 

imagery for some states is lagging behind the intended three year interval. 

Seasonality can also be a temporal consideration for urban land cover mapping. The time of 

year that imagery is acquired matters, especially for mapping of vegetation. Summertime images 

of a city can be strikingly different from wintertime images (for most cities outside the tropics). 

Deciduous trees will appear either with leaf-on canopy or leaf-off bare branches, and other types 

of vegetation also exhibit phenological differences depending on the season. The intended end-

use of a land cover map might need to dictate the seasonality of its source imagery: if mapping of 

impervious surfaces is the chief concern, then leaf-off imagery will probably do a better job of 

accounting for all paved surfaces (Repaka et al., 2004), but if urban forestry or ecological studies 

are the chief concern then leaf-on imagery might be most appropriate (Grove et al., 2006). 

Another temporal consideration is that of continuity and consistency of the imagery data 

source. Will the imagery selected for today‟s map production be available in the future, the next 

time we need to repeat the process? Satellite operations are not guaranteed, in fact it is a virtual 

certainty that each and every satellite will fail at some point (Stoney, 2007, see chart of expected 
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satellite operational lifespans). National aerial imagery programs, such as NAIP, are subject to 

budgetary and policy fluctuations and may be changed or discontinued. Advocates such as the 

ASPRS committee (ASPRS, 2006) make a strong case for continued refreshment of nationwide 

orthoimagery into the future but do not control that future.  

In summary, urban land cover maps need to be updated regularly, so the temporal resolution 

of source imagery is an important consideration for appropriate selection. Attention should also 

be paid to seasonality of the imagery, and potential continuity of the data source. 

Radiometric Resolution 

Relatively little information appears in the literature with regard to the importance of 

radiometric resolution (pixel depth, or quantization) for detailed urban studies. Virtually all useful 

remote sensor data is available in at least 8-bit quantization, with more recent sensors able to 

provide 11, 12 or even 16-bit data. However few researchers have even mentioned quantization or 

radiometric resolution, and no studies (found in this literature search) have identified it as a key 

factor. For example, J Jensen entirely ignores this type of resolution in discussions of resolution 

requirements for urban remote sensing (J. R. Jensen, 2007, pp. 444-450). Another author notes 

that higher radiometric resolution may not improve information about urban-scale objects and 

features (Myint, 2007). From this, one can assume that radiometric resolution is probably not an 

important factor and should have little influence on selection of imagery for urban land cover 

maps. 

Availability, Accessibility, and Cost 

Some remote sensor data are relatively easy to obtain and others are more difficult. Also, 

costs vary from zero to thousands of dollars for imagery that is useful for urban applications.  

In general, imagery that was acquired under US federal government non-security-related 

programs is made available for little or no cost to US citizens. United States federal law and 

policy (e.g., the Freedom of Information Act) essentially acknowledges that taxpayers own the 



www.manaraa.com

27 

 

work product of the federal government and are entitled to obtain it (within security limitations). 

Data from Landsat, ASTER, and other US government-sponsored satellite programs are readily 

available and usually only cost a nominal fee for media and shipping, or can be downloaded via 

the internet. Data from aerial programs like NAPP and NAIP are likewise available either by 

internet download (for free), or media shipping (for a nominal fee). Because states have an option 

to jointly fund NAIP data acquisition and processing for their state, some states also provide 

NAIP imagery products. For example, NAIP imagery for the state of Utah is available for free 

download from the Utah State Geographical Reference Database (SGID) website 

(http://gis.utah.gov/download). 

Imagery that is acquired by private commercial firms is usually available only for a fee. The 

terms of purchase, and the delivery mechanisms, differ based on each company‟s policies and 

marketing philosophy. At this time, the only satellite based sensors that can provide very high 

resolution data suitable for urban mapping (IKONOS and QuickBird) are privately owned by for-

profit companies. These data can be expensive, requiring significant budgetary appropriations by 

municipal agencies or researchers who want to use them. Satellite sensors planned for near future 

operations (such as GeoEye) are likewise all privately owned, for-profit ventures. 

In a positional paper by the WyomingView consortium (associated with AmericaView and 

sponsored by the USGS), the authors argue for expanded access to free or low-cost remote 

sensing data (Sivanpillai & Driese, 2007). This paper states the case that free and easy access to 

remote sensing data archives can be a catalyst to facilitate applications in government agencies 

and research institutions. Furthermore, barriers (real and/or perceived) often inhibit greater 

adoption and use of remote sensing data for useful applications at all levels. The authors conclude 

by saying “Our experience demonstrates that if remotely-sensed data can be obtained for low or 

no cost, and in a ready-to-use format, more users will adopt remote sensing technology.” 
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Imagery Preprocessing 

Another factor to be considered in the selection of remotely sensed imagery is what type of 

preprocessing will be necessary. The two main categories of image preprocessing are radiometric 

(or atmospheric) correction, and geometric correction (or geo-rectification) (J. R. Jensen, 2005, 

pp. 194-250). Additionally, some imagery may need to be topographically corrected (or ortho-

rectified) to achieve planimetric accuracy. Most available remotely sensed data is “raw”, or not 

preprocessed. Some researchers have provided information in their reports regarding the 

preprocessing they had to perform prior to beginning the central processing methods of their 

research (Alberti et al., 2004; Davis & Wang, 2002; Hardin et al., 2008; Xu & Gong, 2007). 

Some preprocessing may be done as an optional value-added service by the data provider. If 

the provider is a for-profit commercial firm then this option usually costs extra. In the case of 

NAIP imagery, the federal program includes in its scope and funding complete preprocessing of 

the imagery so that it is truly ready-to-use. NAIP imagery is geometrically corrected to the 

appropriate UTM zone, and it is ortho-rectified for planimetric accuracy. Meta-data is provided 

with NAIP imagery that documents the preprocessing procedures performed including the 

accuracy achieved (see Appendix A for a sample NAIP meta-data file). 

Automated Processing Methods for Detailed Urban Mapping 

The raw data of a remotely sensed image becomes more useful when it is transformed into 

information. Classification is the primary method used to transform remotely sensed data into a 

thematic land cover map (J. R. Jensen, 2005, pp. 337-338). A variety of computer algorithms 

have been developed that essentially attempt to mimic an experienced human analyst to examine 

the image and recognize patterns, then assign portions of the image to pre-determined classes. No 

method developed to date is completely automatic – all require input of some type of human a 

priori knowledge. Consequently, these methods can be characterized as computer-aided thematic 

information extraction systems.  
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Researchers have applied various types of classification methods to the problem of detailed 

urban land cover mapping. Also, many researchers have developed modifications or extensions to 

known methods, devised hybrid approaches that combine processing methods, and even 

developed new experimental approaches and algorithms. All the methods aim to produce high 

quality land cover maps or extraction of land cover features; indeed, the nearly exclusive focus of 

much of the research is on achieving better classification accuracy (sometimes with little regard 

for operational viability of the method). 

Anyone needing to create a detailed land cover map is faced with the non-trivial challenge of 

selecting and implementing appropriate processing methods. In the subsections that follow, 

examples of methods found in the literature are reviewed with the intent to focus on those 

methods that seem to balance high classification accuracy with reasonable operational economics. 

In general, methods can be grouped into two main categories of classification approaches: pixel-

based and object-based. 

Pixel-based Classification 

Conventional or traditional classification approaches operate on a per-pixel basis. These 

methods examine each pixel of the source image independently and assign class membership 

based on the spectral data available in that pixel. The most common per-pixel methods are 

supervised classification and unsupervised classification. 

In a supervised classification procedure the analyst first identifies representative example 

training sites for each class of interest, and then the software processes the image to match pixels 

to the defined training examples. Several classification algorithms are available to determine to 

which class a pixel should belong. These algorithms (or classifiers) include Maximum 

Likelihood, Parallelepiped, Nearest Neighbor, Minimum Distance to Means, Neural Network, 

Expert System, and others. The Maximum Likelihood classifier (MLC) is a parametric statistical 

algorithm that works best with training class data that is normally distributed. Other classifiers are 
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non-parametric and do not assume normal distributions of class populations (J. R. Jensen, 2005, 

pp. 370-379). 

Many examples are found in the literature of case studies that used a supervised 

classification procedure; it appears to be the most common per-pixel approach. Following are 

some examples of case studies that used supervised classification for detailed urban land cover 

applications: 

 A 1999 study that was designed to evaluate the use of high spatial resolution data used 

4-meter aerial imagery and a supervised classification method to map land cover in a 

mixed urban and peri-urban locale in England (Aplin et al., 1999). The per-pixel result 

was then generalized at the per-field level, and post-classification filters were applied to 

enhance the accuracy and usability of the classified map. 

 Another study done in the UK used 2-meter aerial color imagery and supervised 

classification to produce a 5-class urban land cover map (Barr & Barnsley, 2000). 

Further processing was performed using an experimental “reflexive mapping” 

technique to enhance the accuracy of the map and prepare it for inferential land use 

analysis. 

 In a study done in Columbia, Missouri, pan-sharpened 1-meter IKONOS data were 

processed using supervised classification and the parallepiped algorithm to produce a 

7-class land cover map with a reported 83% overall accuracy (Davis & Wang, 2002). 

 Using aerial hyperspectral data, researchers in Santa Barbara, California, used the 

maximum likelihood classifier with 10 carefully chosen spectral bands of AVIRIS data 

to map 20 classes of land cover / land use, and reported 78.4% overall classification 

accuracy (Herold, Gardner et al., 2002). 

 A hybrid approach that included supervised classification and spectral mixture analysis 

(SMA) was performed using Landsat TM and ETM+ medium resolution data for a land 
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cover change detection study in the Puget Sound, Washington area (Alberti et al., 

2004). The relatively low spatial resolution of the data required the sub-pixel SMA 

technique to estimate land cover fractional values for each pixel. 

 Urban heat island analysis was the object of a study that used aerial ATLAS 10-meter 

(15 bands) data and supervised classification with the parallelepiped algorithm to map 

land cover in Salt Lake City, Utah (Gluch et al., 2006). 

 Another study done in Columbia, Missouri, extracted impervious surfaces and 

transportation features using supervised classification with the parallelepiped classifier 

(Wang & Trauth, 2006). 

 Supervised classification using the maximum likelihood classifier was used in an 

Indian study to create a 3-class urban land cover map using pan-sharpened IKONOS 

imagery (Jain & Jain, 2006). 

 A comparative study performed in the Phoenix, Arizona, area used several types of 

remotely sensed data, processed by different methods including supervised 

classification with the maximum likelihood algorithm (Wentz et al., 2006).  

 An experimental study that compared per-pixel classification and an object-based 

method was performed in Mankato, Minnesota, using 2.6-meter QuickBird 

multispectral imagery as input to both procedures (Yuan & Bauer, 2006). Supervised 

classification used the maximum likelihood algorithm to create a 5-class land cover 

map with reported 87% overall accuracy (the object-based method reported 92.5% 

overall accuracy). 

 A study performed using pan-sharpened QuickBird 0.61-meter imagery of a portion of 

the city of Ghent, Belgium, employed supervised classification with a neural net 

classifier (Van de Voorde et al., 2007). Three experimental post-classification 
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processes were then tested to evaluate their effectiveness in improving classification 

accuracy. 

 A hybrid approach that combined supervised and unsupervised classification was done 

recently in an area of Raleigh, North Carolina (Hester et al., 2008). Pan-sharpened 

QuickBird 0.61-meter multispectral data was first classified into six high level classes 

by a supervised method, and then four of the categories were further classified by the 

unsupervised method to derive more detailed subclasses. Overall accuracy was reported 

to be 83%, then a GIS-based refinement technique was performed which increased the 

overall accuracy to 89%. 

A problem commonly seen with the output of supervised per-pixel classification is that of 

isolated pixels, also called speckling or the “salt & pepper effect”. Because each pixel is analyzed 

independently, the spectral data of a given pixel may vary enough from its immediate neighbors 

that it gets assigned to a different class and thus stands alone. For many purposes it may be 

desirable to reduce this effect and produce a map with greater homogeneity. Post-classification 

processing, using smoothing filters or other techniques, has been done with some success to 

reduce speckling and increase overall classification accuracy (Aplin et al., 1999; Barr & Barnsley, 

2000; Van de Voorde et al., 2007; Zhang, 2001).  

Unsupervised classification uses K-means or ISODATA algorithms to create clusters of 

spectrally-similar pixels. This procedure then requires an analyst to organize, interpret, and label 

the clusters with meaningful land cover class designations. Following are some examples of 

studies found in the literature where unsupervised classification was used to derive urban land 

cover maps: 

 A study to extract urban forested areas was performed in Germany with very high 

resolution aerial CIR imagery, and used unsupervised classification coupled with a 

texture detection algorithm (Zhang, 2001). 
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 In a study of imperviousness in Richland County, South Carolina, researchers 

combined aerial color imagery and LIDAR data and evaluated three classification 

methods including ISODATA unsupervised classification (Hodgson et al., 2003). 

Accuracy results for the unsupervised method were lower than for the other two 

techniques. 

 Impervious surface measurements were obtained by unsupervised classification of 

QuickBird 2.4-meter multispectral imagery of Sioux Falls, South Dakota (Thanapura et 

al., 2007). 

 A medium resolution land cover map of Terre Haute, Indiana was produced from 

Landsat ETM+ imagery using unsupervised classification, as a basis to calculate land 

cover metrics for a population estimation research study (Hardin et al., 2008). 

 As mentioned above, Hester et al (2008) combined supervised and unsupervised 

classification methods in a North Carolina study. 

A number of urban land cover studies that used medium or low spatial resolution imagery 

(such as Landsat TM or ETM+) have employed processing methods designed to analyze sub-

pixel spectral data. Lower resolution images typically have a large proportion of spectrally-mixed 

pixels, especially in urban scenes where multiple land cover materials can be represented within 

the pixel reflectance values. Methods such as spectral mixture analysis (SMA) and variants have 

been employed with the intent to extract or estimate sub-pixel information from spectrally-mixed 

pixels (Alberti et al., 2004; Buyantuyev et al., 2007; Lu & Weng, 2004; Myint, 2006; Phinn et al., 

2002; Small, 2001; Tang, Wang, & Myint, 2007; Weng & Lu, 2008; Wu, 2004; Wu & Murray, 

2003; Xian & Crane, 2005; Yang et al., 2003; Zoran et al., 2008). Sub-pixel analysis techniques 

are less applicable and usually not needed when using very high spatial resolution imagery. 

Furthermore, these techniques can only estimate fractional amounts of land cover materials 

within each pixel and are therefore not useful for detailed urban land cover mapping. 
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Fuzzy logic has been used in some land cover classification studies. Fuzzy or soft 

classification approaches recognize the natural gradations of land cover and allow for pixels to be 

assigned a probability of membership in multiple classes. Some researchers have applied fuzzy 

classification techniques to urban land cover applications (Islam & Metternicht, 2005; Tang et al., 

2007). However, the actual usefulness of soft classifications for making thematic maps is unclear; 

a fuzzily-classified map could be quite complicated to create and for end-users to interpret and 

implement for real-world applications. Fuzzy logic has been applied with both per-pixel and 

object-based classification procedures. 

Several advanced classification methods have been developed that use artificial intelligence 

concepts to imitate the reasoning of an experienced human analyst. Artificial Neural Networks 

(sometimes abbreviated as NN or ANN) are non-parametric, sophisticated computing 

environments that try to mimic the structure and reasoning/processing of the human brain. Some 

researchers have applied ANNs to land cover classification problems (Aitkenhead & Dyer, 2007; 

R. R. Jensen & Binford, 2004; Van de Voorde et al., 2007). Another sophisticated technique is 

the use of Expert Systems, which usually employ a rule-based inferencing methodology. 

Researchers report varied experiences using rule-based or knowledge-based methods, and several 

have emphasized that building and testing the rules or knowledge base was a difficult and time-

consuming effort (Amarsaikhan et al., 2007; Choi & Usery, 2004; Huang et al., 2008; J. R. Jensen 

et al., 2005; Myint, 2006; Stow et al., 2003; Van de Voorde et al., 2007; Wentz et al., 2006; W. 

Zhou et al., 2008). It should be noted that ANNs, Expert Systems, rule- or knowledge-based 

techniques, and decision trees have been adapted for use with both per-pixel and object-based 

classification approaches. 

Conventional per-pixel classification methods may not perform well with imagery that is 

very high spatial resolution and relatively low spectral resolution (Herold, Gardner et al., 2002; 

Thomas et al., 2003; Yuan & Bauer, 2006). As noted previously, very high spatial resolution 

urban imagery is very heterogeneous and exhibits high within-class spectral variances. Because 
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per-pixel methods use only spectral data they are not always able to make consistent distinctions 

between classes of land cover with similar reflectance spectra (Herold, Scepan et al., 2002; 

Myint, 2007). 

Despite the implications of its title, an interesting paper titled “Beware of per-pixel 

characterization of land cover” (Townshend, Huang, Kalluri, DeFries, & Liang, 2000) actually 

supports the notion that higher spatial resolution imagery can produce higher land cover 

classification accuracy using per-pixel methods. These researchers focused on low/medium-

resolution Landsat TM data, and discussed the phenomenon of “pixel bleed”, i.e., reflectance data 

for individual pixels includes portions of the signal from surrounding pixels. Researchers have 

modeled this effect with the Modulation Transfer Function (MTF). The results and conclusions of 

Townshend et al. (2000) suggest that “land cover properties should be reported at spatial 

resolutions coarser than the individual pixel”, and “only in those situations where pixel size is 

small relative to the area of land cover units will these [MTF] effects be unimportant”. However, 

these conclusions should be interpreted with caution, as the study did not evaluate the MTF effect 

on high spatial resolution data. 

Object-based Classification 

In response to the shortcomings of per-pixel techniques, researchers have developed object-

based methods that process image objects instead of individual pixels. Image objects are made up 

of contiguous groups of pixels that ideally perfectly represent real-world objects or homogenous 

landscape features. Object-based techniques are not new, but are generally considered more 

recent and innovative than pixel-based methods. 

An object-based procedure first segments the image into homogenous image objects, and 

then applies a classification algorithm to assign class membership to the segments/objects. 

Whereas per-pixel classification methods can only use spectral data to differentiate between land 

cover materials, object-based methods can use a richer resource of spectral and spatial 
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information. A number of spectral and spatial features (including texture, shape, size, etc.) can be 

calculated for each object or image segment, and used to help differentiate land cover classes. 

The texture and pattern of image objects can play an important role in object-based image 

analysis, and it is discussed by several authors (Aplin et al., 1999; Herold et al., 2003; Myint, 

2003, 2007; Myint et al., 2006; Zhang, 2001). The concept of image or object texture can be 

difficult to precisely define, and likewise is challenging to codify in computer algorithms. 

Nevertheless, much research has focused on texture, and several texture metrics have been 

defined that are amenable to realization in software systems (Myint, 2007). The use of texture 

measures was investigated as early as 1979 as a means to better classify urban-fringe land covers 

(J. R. Jensen, 1979). However, Myint (2007) suggests that optimum use of texture measures 

requires the analyst to have a good understanding of the underlying theoretical background and 

mathematics upon which the techniques are based. 

Following are some examples of case studies found in the literature that employed an object-

based classification methodology: 

 A 2002 study done in Santa Barbara, California, used IKONOS 4-meter multispectral 

imagery and the object-based methods of image segmentation and classification of 

image objects (Herold, Scepan et al., 2002). These authors strongly suggested that an 

object-based method is the only way to achieve high classification accuracy with high 

spatial resolution urban imagery. 

 Mapping of impervious surfaces for storm water management was the purpose of a 

Scottsdale, Arizona, study that compared three processing methods including object-

based classification with decision tree analysis (Thomas et al., 2003). The object-based 

method performed well, and the authors concluded that “the key to successful mapping 

from high-resolution imagery can be found in integrating spectral response with 

additional informational elements such as shape, texture, and context”. 
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 A study of transportation networks along the Mississippi Gulf Coast compared per-

pixel supervised classification with object-based methods using both IKONOS and 

QuickBird data sources (Repaka et al., 2004). 

 QuickBird 2.5-meter multispectral imagery of a portion of Ghent, Belgium, was used 

for an experimental object-based classification study (Carleer & Wolff, 2006). A focus 

of this work was to evaluate different segmentation levels and parameters, and to 

evaluate the selection of the most relevant object features to use for optimum accuracy 

results. 

 Land cover mapping of the city of Beijing, China, was the purpose of a study that used 

object-based techniques with medium-resolution ASTER data (Y. Chen et al., 2007). 

 A study of biodiversity assessment in Dunedin City, New Zealand, used object 

segmentation and classification with IKONOS imagery to map urban vegetation 

communities (Mathieu et al., 2007). 

 Two related studies performed in the Phoenix, Arizona, metropolitan area used 0.6-

meter aerial true-color imagery and object-based methods to map land cover and the 

urban forest (Walker & Blaschke, 2008; Walker & Briggs, 2007). 

 A study compared an object-based approach to a conventional per-pixel supervised 

classification for land cover mapping of a peri-urban environment around Gettysburg, 

Pennsylvania, using IKONOS 4-meter multispectral imagery (Platt & Rapoza, 2008). 

 An industry on-line magazine reported that a commercial geospatial services firm has 

used QuickBird 2.4-meter multispectral imagery and object-based feature extraction 

methods to develop detailed land cover maps of portions of the greater Chicago, 

Illinois, metropolitan area (Schutzberg, 2008). 

 A recent study of the Mankato, Minnesota, area focused on environmental impacts due 

to land cover changes (Yuan, 2008). This work first fused QuickBird and NAIP 
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imagery to obtain 7 bands of 1-meter resolution multispectral data, and then applied 

object-based image segmentation and classification to create 4-class land cover maps 

for two different dates. The author reports achieving very high classification accuracy, 

with Kappa values over 0.9. 

Similarly to per-pixel supervised classification, object-based procedures also use a specific 

classification algorithm to assign class membership to objects. A supervised approach is often 

done, where the analyst identifies representative image segments and identifies specific class 

membership for the sample segments. The software then uses an algorithm such as Nearest 

Neighbor to process all segments/objects in the image. This is usually an iterative process, 

allowing the analyst to adjust and refine the class designations for sample image objects, 

evaluating the results of each successive classification pass until a satisfactory result is obtained. 

Another approach can use a knowledge-base or decision tree rules that specify combinations of 

object features that define each class. Preparation and testing of the rules or knowledge base can 

be a lengthy iterative process. 

Several authors have emphasized the importance of parameters that control the segmentation 

level, and the judicious selection of object features to be used for object classification. Both over-

segmentation (many small segments) and under-segmentation (few, large segments) can result in 

less-than-optimum classification accuracy. Analysts typically use an iterative trial-and-error 

procedure to arrive at a „best‟ segmentation level for the mapping task at hand; at least two 

studies have offered semi-automated methods to assist in defining optimal segmentation levels 

(Carleer & Wolff, 2006; Zhang & Maxwell, 2006). Another factor in resulting classification 

accuracy is the selection of feature combinations to be used by the classifier. Carleer & Wolff 

(2006) documented 33 total features in 3 categories (spectral, textural, morphological) that were 

calculated for each image object, and they evaluated individual features and combinations of 

features for their contributions to resulting accuracy. 
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Other Software Techniques 

As documented in the literature, researchers are constantly working to develop improved 

methods – there is no shortage of innovation and experimentation. Many research efforts have 

sought to expand, extend, vary, and/or combine known methods. 

Several studies have used hybrid approaches that combine methods, usually with the goal of 

getting the best of both techniques (Gamba & Dell'Acqua, 2007; Hester et al., 2008; Hodgson et 

al., 2003; Thomas et al., 2003; Wentz et al., 2006; Zhang, 2001). Hybrid approaches add 

increased complexity to the process and have not always demonstrated significant classification 

improvements. 

As noted earlier in the sections on imagery resolution issues, techniques for image fusion 

have been developed that can contribute to higher mapping accuracy. These methods include pan-

sharpening (Davis & Wang, 2002; Hester et al., 2008; Van de Voorde et al., 2007), and fusing 

data from multiple sensors (Yuan, 2008). 

Also discussed earlier, post-classification processing using filters or other techniques have 

been applied to pixel-based classifications to smooth resulting classified images and reduce the 

salt & pepper effect. 

Some researchers have developed software methods that address the special problems of 

detailed urban mapping, such as dealing with shadows and tall buildings. These topics are 

discussed in the following section. 

Ancillary Issues Affecting Urban Land Cover Mapping 

Shadows 

High spatial resolution images of urban environments all contain shadows to some extent. 

The severity of cast shadows is determined by sun angle, the presence of tall urban objects like 

buildings and trees, and (sometimes) sensor angle. Shadows in satellite images are generally more 

severe than those in aerial imagery (Dare, 2005); satellites are in fixed orbits that allow little or no 
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flexibility in image acquisition, whereas aerial missions can be timed specifically to minimize 

shadows.  

In the context of mapping urban land cover, shadows are a problem since they obscure 

whatever is actually on the ground in the area covered by the shadow. Some researchers have 

simply added a „shadow‟ class in their classification scheme to help differentiate between 

shadows and other very dark surface elements such as water or dark impervious surfaces (Davis 

& Wang, 2002). An urban heat island study used a separate shadow class because shadowed 

surfaces exhibit separable thermal properties from other land cover types (Gluch et al., 2006).  

However, simply classifying an area as „shadow‟ is usually insufficient since it provides no 

useful information about actual land cover materials. A 2003 study in Minnesota discussed 

accuracy problems caused by shadows and recommended further study of the issue (Sawaya et 

al., 2003). Several recent studies have experimented with methods to automatically detect 

shadows in high resolution urban imagery and then remove or mitigate them (Dare, 2005; Y. Li & 

Gong, 2006; Nichol & Lee, 2005; Tsai, 2006; Van de Voorde et al., 2007; Yuan & Bauer, 2006). 

In general the methods discussed are complex and/or experimental, and efforts to replace 

shadows with correct land cover classes are still problematic and inconsistent (Dare, 2005). In a 

very recent study, it was found that fusing a QuickBird image with an aerial NAIP image had 

good success in mitigating shadow effects because shadows in the two sets of imagery were at 

very different angles and thus compensated for each other (Yuan, 2008). 

To summarize, shadows exist in high resolution urban imagery, and methods to accurately 

replace them with true land cover types are difficult to implement and not perfected yet. 

Tall Buildings Off Nadir 

In addition to casting shadows, tall buildings also cause other problems in urban remote 

sensing. Unless a building is precisely at the nadir of the photograph or image, it will appear non-

vertical or leaning, and will occlude other features on the side of the building furthest from nadir 
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(i.e., leaning away). The problem is similar to that of shadows in that portions of the land cover 

are not visible and thus are not accurately classified. In addition, one or two vertical facades of 

the “leaning” building may be visible and without correction will be classified as land cover 

features. 

A solution has been proposed by G Zhou & Kelmelis (2007) that involves the use of several 

ancillary data sets: a digital terrain model (DTM), one or more digital building models (DBMs), 

and one or more „slave‟ orthoimages. A DBM is required for each building that is to be 

orthorectified, and the „slave‟ orthoimages are needed to fill in the image areas that were 

occluded by the skewed buildings in the original or „master‟ image. Several complex processing 

steps are necessary to implement this proposed solution. 

In summary, occlusion by off-nadir tall buildings can be a problem in high-resolution urban 

imagery. Methods to compensate are complex and require use of several ancillary datasets. 

Seasonality of Imagery 

The time of year that urban imagery is acquired can have a significant impact on a resulting 

land cover map for most non-tropical cities. Overhead images obtained during the growing season 

show deciduous trees in leaf-on condition, and the tree canopy will often obscure whatever is on 

the ground below the trees. By contrast, leaf-off imagery may reveal surface materials under the 

trees, but the extent of urban tree/forest canopy will be difficult to ascertain. Due to phenological 

cycles, other types of vegetation also exhibit temporal differences in remotely sensed imagery. 

The urban imperviousness work by Hodgson et al (2003) used imagery acquired in early 

March, which showed trees not yet fully leafed out. A study that was focused on extracting road 

features in the Mississippi Gulf Coast region reported problems with imagery acquired at 

different times of the year: leaf-off images allowed good interpretation of road features, while 

leaf-on images showed full tree canopies but hid some road surfaces and edges (Repaka et al., 

2004). Another study that mapped impervious surfaces mentioned leaf-on imagery can obscure 
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some impervious features, but suggested the difference may not be statistically significant 

(Sawaya et al., 2003). A study of the urban heat island effect in Sacramento, California, discussed 

the value of accurate above- and below-canopy land cover metrics and used statistical sampling 

methods to capture data about both (Akbari et al., 2003). 

In summary, a given land cover map will usually reflect the seasonality of its source 

overhead imagery. Accuracy of areal measurements of specific cover classes and other land cover 

metrics from these maps will be influenced by the time of year that the imagery was acquired. 

Accuracy Assessments of Land Cover Maps 

Accuracy of derived thematic maps is very important and has been a key driving factor in 

research and development efforts. However, it is not easy to precisely define what accuracy 

means, nor is accuracy a simple thing to measure or interpret. Errors exist in all maps: a map 

fundamentally is a simplified model of reality, thus it has limitations and imperfections (Foody, 

2002). Furthermore, no method of making maps is perfect, whether computer-assisted or entirely 

done by human expertise. 

In spite of the challenges, it is nevertheless essential to make an assessment of the accuracy 

of a derived land cover map. Foody (2002) probably states it best: 

“It is important, therefore, that the quality of thematic maps derived from 

remotely sensed data be assessed and expressed in a meaningful way. This 

is important not only in providing a guide to the quality of a map and its fitness 

for a particular purpose, but also in understanding error and its likely 

implications, especially if allowed to propagate through analyses linking the 

map to other data sets.” (p. 186) 

Errors in classified maps fall into two categories: errors of commission and errors of 

omission. In reality, every misclassified pixel or image object is both an error of omission and 

commission; however, it has been found useful to look at misclassifications from both 

perspectives (J. R. Jensen, 2005, p. 499). The eventual end uses and users of a map may find 

certain categories of errors more problematic than others. 
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Although various methods of assessing accuracy have been employed, the most widely used 

and accepted practice in recent times is based on an error or confusion matrix (Congalton, 1991; 

Foody, 2002). This is a fairly simple but comprehensive device for tabulating sampled 

classification errors, and then deriving meaningful, quantitative, statistical measures of map 

accuracy. The matrix compares ground reference data (assumed to be the “truth” or reality of 

what is actually on the ground) with mapped classification results. Where the ground reference 

information and the mapped information agree there is no error; where they don‟t agree it is 

assumed that the map is in error and has misclassified that point or feature. 

To fill out the error matrix, probability-based statistical sampling methods are used to gather 

data about classification errors. City-wide imagery and maps typically involve extremely large 

data sets (especially when using very high resolution imagery), so it‟s not possible to perform a 

census of every pixel in the image. Instead, a sound un-biased sampling methodology should be 

employed: usually either true random sampling or stratified random sampling (Foody, 2002). A 

statistically-significant number of random samples (pixels) are needed: the minimum number to 

be used can be calculated using the formula for the binomial probability theory (Fitzpatrick-Lins, 

1981). The sample points are to be randomly distributed throughout the study area (for a true 

random sampling scheme) and should not coincide with training sites to ensure that no bias is 

introduced. If a stratified random sampling scheme is employed, then a sufficient number of 

sample points for each class must be distributed randomly within areas representing each of the 

classes on the map (J. R. Jensen, 2005, pp. 502-504). 

At each sample point, it must be determined if what is shown on the classified map matches 

the ground reference data. If it does not agree, the nature of the misclassification is recorded. 

Summarized counts of the data obtained from examining all of the sample points are then entered 

into the error/confusion matrix. Details on construction of a proper error matrix are given by J 

Jensen (2005, p. 499). 
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Several measures of error can be derived from the confusion matrix, and can be calculated 

per class and for the overall map. These include: a measure of omission error called Producer‟s 

Accuracy, a measure of commission error called User‟s Accuracy, and the total percentage of 

correctly classified points called Overall Accuracy. The aforementioned are typically expressed 

as percentages. Another useful overall metric is the Kappa statistic, or Kappa Coefficient of 

Agreement (sometimes notated as Khat). This is a discrete multivariate analytical measure that 

indicates how much the classified map agrees with the ground reference data compared to pure 

chance agreement. Calculation of Kappa from data in the error matrix results in a value between 

0.0 and 1.0; values closer to 1.0 indicate better agreement/accuracy (J. R. Jensen, 2005, pp. 505-

508). 

Unfortunately, there is no universally accepted single, all-purpose measure of map accuracy. 

Some researchers have suggested a (somewhat arbitrary) goal or threshold of 85% overall 

accuracy for a classified map to be considered acceptably accurate, but these types of proposed 

standards have not seen wide acceptance (Foody, 2002). Instead, it has been recommended that 

classification study reports should include the complete raw error matrix, together with computed 

values for producer‟s accuracy, user‟s accuracy, overall accuracy, and Kappa. The eventual users 

of the report and/or the classified map can then determine their own interpretation and uses for 

the several reported accuracy measures. 

It is worthwhile to note the importance of accuracy assessments for cases where 

multitemporal land cover maps are to be used for change detection/analysis purposes. This is a 

situation where „the chain is no stronger than its weakest link‟ – in other words, the accuracy of 

the change detection cannot be any better than the worst accuracy of the input maps, and is 

usually even lower. Thus, high accuracy of the individual maps is very important as is proper 

assessment of their accuracies, as these all contribute to the ultimate assessment of the change 

analysis accuracy. A good example of this, with clear descriptions of accuracy assessment 

procedures and results, was given by W Zhou et al. (2008). 
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In the Aspinall (2002) paper, which proposed a comprehensive data and analytical 

infrastructure for land cover change analyses, the author emphasized capture and storage of land 

cover map accuracy data within a map metadata repository, and careful management of the 

accuracy metadata within the overall scheme.  

Operational and Cost Issues 

It is well beyond the scope and intent of this thesis to do financial analyses, business-case 

analyses, cost-benefit analyses, or the like. Nevertheless, a discussion of transitioning pure remote 

sensing research to useful real-world applications necessitates the consideration of cost and 

operational issues. In the literature, references by authors to these concerns have ranged from 

non-existent, to brief general comments, to extensive thoughtful treatments. 

In an early study, J Jensen (1979) applied some texture measures to better classify urban 

fringe land cover elements. In his report the author cautioned that there is a cost-benefit trade-off: 

applying the texture measures improved overall accuracy to some extent, but at the cost of 

additional expense for data preprocessing. The implication was made that the increased cost may 

not always be worth the small improvement to the quality of the output map. 

The concept of there being a trade-off between quality and cost is not new and not limited to 

the remote sensing community, of course. Basic project management theory attests there are three 

competing demands in the completion of any project: quality, cost, and time/schedule; 

furthermore, all three cannot be optimized simultaneously. If something must be done quickly, 

then quality and/or budget are sacrificed; if high quality standards are upheld, the project costs 

more and usually takes longer; if costs are tightly limited, it should be expected that something of 

less than top quality will be produced. 

A thorough treatment of trade-offs between “decision quality” and “information cost” in the 

context of remote sensing applications was given by de Bruin & Hunter (2003). Their paper 

discussed the notion of “value of information” and they proposed using a decision method based 
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on probabilistic cost-benefit analysis to arrive at acceptable trade-offs or balance between 

competing demands. Although this paper only considered the data acquisition costs, a fuller 

interpretation of “information cost” perhaps should include both imagery cost and the processing 

costs needed to transform the data into useful information (i.e., thematic maps).  

The Space Studies Board of the National Research Council, under the US National Academy 

of Sciences, convened a special steering committee in workshops held in 2000 (Steering 

Committee on Space Applications and Commercialization, 2001). The focus of the workshops 

and published report was on transfer of remote sensing technology from pure research into 

practical applications. Findings covered the general areas of life-cycle costs, education and 

training, outreach, applications research, requirements of application users, and standards and 

protocols. A fundamental conclusion of this report was that many good research efforts in remote 

sensing do not transition into useful applications. Gaps must be bridged that encompass both 

technical and social issues. In particular, there was explicit acknowledgement that research-to-

applications models (including funding and incentives) useful in other fields do not (or did not) 

exist in remote sensing. It is not clear what progress has been made on technology transfer of 

remote sensing applications since the publication of that report. 

The following list is intended to highlight some cases found in the literature where 

researchers discussed cost and/or operational issues in their reports: 

 (Green, Kempka, & Lackey, 1994) stated that their project goal was not to develop new 

technologies but to tailor existing technologies for commercialization and introduction 

to the marketplace. They identified key issues in becoming operational for 

commercialization: product awareness, image cost, and ease of technical 

implementation.  

 (DeFries & Townshend, 1999) addressed the challenges of moving from research to 

operational implementation for global land cover map production. The four main issues 

discussed were validation procedures (i.e., accuracy assessment), automation of 
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methods, continuity of data, and class schemes suitable for a wide range of 

applications. 

 (Foody, 2002) declared that land cover data/maps are not readily available or trivially 

easy to acquire, and that full potential for creating land cover maps from remotely 

sensed data has not been realized. 

 (Akbari et al., 2003) stated that one objective of their effort was to develop an 

automated process to obtain accurate land cover data in an efficient, reproducible 

manner. They also reported relatively low costs for obtaining aerial imagery for the 

study areas of their research. 

 (Thomas et al., 2003) performed three classification methods and evaluated the time 

and effort required for each. They concluded that the most accurate of the three 

methods required a large amount of analyst time for preparation and testing of rules. 

The second most accurate method in their study was object-based classification, which 

was much more efficient and provided acceptable quality. 

 (Wentz et al., 2006) measured and reported on five factors they felt could be used to 

influence selection of imagery and methods for land cover mapping: spatial and 

temporal extent, classification, accuracy, cost in analyst hours and money expended, 

and usability. 

 (Grove et al., 2006) performed manual heads-up digitizing of a few sample study areas 

within the city of Baltimore, Maryland. They concluded the digitizing method was too 

time-consuming and costly, and that automated techniques are needed to produce land 

cover data more efficiently. 

 (Mathieu et al., 2007) compared using an object-based method of classifying IKONOS 

data to previous experience performing manual photo interpretation. They concluded 
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that accuracy of the automated method was not quite as good as photo interpretation, 

but it was good enough for the purpose and was an order of magnitude more efficient. 

 (Nichol et al., 2007) reported on a workshop held in Hong Kong on the subject of 

remote sensing applications for urban planning. The workshop examined issues that 

can help to promote practical applications of urban remote sensing. Relevant 

observations included: “fully automated land use classification in urban areas is not yet 

operational … and manual interpretation of aerial photographs or high resolution 

imagery is still the norm”; also, “impediments to wider use of [remote sensing] data in 

urban planning and management are educational and institutional, not technical. The 

technology for image data acquisition is available and its wider utilisation is mainly 

dependent on increased awareness of its availability among practitioners, cost 

reductions, and easier integration into existing work procedures”. 

 (Sivanpillai & Driese, 2007) called for freely available remote sensing data to foster 

more research and development and implementation of more practical applications. 

 (Van de Voorde et al., 2007) implemented a hybrid classification approach that 

included neural network and rule-based classification enhancement routines. They 

reported that definition and testing of rules cost excessive amounts of time, and that the 

rules were specific for the site, imagery, and types of classification errors encountered, 

thus not transportable. 

 (Walker & Blaschke, 2008; Walker & Briggs, 2007) in two similar studies used 

custom-flown aerial 0.61-meter color imagery to map urban forest extent. They 

discussed selection of aerial imagery as being an order of magnitude less expensive 

than very high resolution satellite data, and easily repeatable. 

 (Hester et al., 2008) justified their use of per-pixel classification of very high resolution 

data. They conclude this method has value because of widespread familiarity and 
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software accessibility (i.e., the methods are readily available in standard software 

packages). 

 (W. Zhou et al., 2008) used an object-based approach coupled with an expert system 

classifier, which they reported to be more computationally demanding than other 

methods. Also creating the knowledge/rule base was reported to be difficult and time-

consuming. 

 (Schutzberg, 2008) reported in an industry newsletter about the operational 

achievement of a commercial geospatial services company, which has produced 

standardized detailed land cover map products for portions of the Chicago, Illinois, 

metropolitan area. Reportedly, the firm uses QuickBird imagery and object-based 

feature extraction software to produce the maps. 

Aside from the Schutzberg (2008) report, there is little evidence in the research literature that 

automated urban land cover mapping has become practically operational. This may be due to the 

very nature of pure scientific research and the purposes for which research studies are published, 

therefore this absence of evidence is not necessarily a clear indication one way or the other. A 

study could be done to assess the current state of urban land cover map production, but that is not 

the focus of this study. It is assumed, based on the limited information reviewed, that automated 

production of land cover maps for urban areas is not yet a common or routine occurrence. 
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METHODS 

Study Area 

The study area, shown in Figure 1, is the combined contiguous urban/suburban area of the 

neighboring cities of Orem and Provo, Utah (approximate center of the area: 40º 16' N, 111º 41' 

W). Orem and Provo are the two largest cities in Utah County, and they have a combined 

population of about 202,000 (according to the 2007 American Community Survey). The average 

elevation of these two cities is about 4,600 feet (1,402 m). Orem and Provo occupy much of the 

land area between the eastern shore of Utah Lake and the western slopes of the Wasatch mountain 

range. The Provo River flows generally southwest from Provo Canyon through this urbanized 

area and empties into Utah Lake. US Interstate Highway 15 runs generally north-south and is the 

major transportation corridor connecting this region with Salt Lake City to the north and Las 

Vegas, Nevada, farther to the south. 

For purposes of this study the city boundaries have been modified slightly to exclude large 

tracts of undeveloped land. For example, the Provo city limits actually include an area that 

extends eastward into one of the mountain canyons – this section has been removed from the 

study area because there are no urban features within it. The resulting extent of the study area 

covers 121.2 square kilometers (about 46.8 square miles). 

The study area includes a mix of urban land cover and land use types. Each city has 

commercial/business districts, and a somewhat continuous strip of businesses along State Street 

extends through both cities. Industrial enterprises are located primarily near the I-15 corridor. The 

campus of Brigham Young University, including the football stadium and other outdoor sports 

facilities, occupies a large area of east-central Provo; the Utah Valley University campus is 

located in the west-central area of Orem. A majority of the land use is residential, dominated by 

single family homes on tree-lined suburban streets, with some higher-density apartments/condos 

in areas near the universities. Very few tall buildings exist in these cities; indeed, the tallest by far 
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is the 12-story Kimball Tower on the BYU campus. Schools, parks, and recreational land uses are 

distributed throughout these communities, and some agricultural uses exist that include orchards 

and field crops. Mountain slopes on the eastern edge of the study area consist of bare earth, rocky 

outcrops, scrub vegetation and a few native trees. 

 

Figure 1. Study area map: the combined communities of Orem and Provo, 

Utah (boundaries modified to exclude large non-urbanized areas) 

 

Data 

Imagery acquired by the US National Agricultural Imagery Program (NAIP) in early August 

of 2006 was used for this study. The NAIP data are color-infrared (CIR) images with spectral 

bands of NIR, red, and green; the spatial resolution is 1-meter ground sampled distance (GSD). 
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The NAIP aerial images have already been radiometrically corrected, they are ortho-rectified for 

planimetric accuracy, and they are geometrically rectified to the UTM Zone 12N NAD83 

projection and datum. Metadata that accompany the image files document the preprocessing steps 

and report the accuracy of the geometric rectification (see Appendix A for a sample of a NAIP 

metadata file). These data were downloaded at no cost from the Utah State Geographic 

Information Database (SGID) website (http://gis.utah.gov/download) in December 2008. Each 

image tile is provided as a Geo-TIFF fileset (set of three files: .tif image file, .tfw world file, .txt 

text metadata file). The spatial extent of each NAIP image tile covers a 3.75 x 3.75 minute quarter 

quadrangle plus a 300 meter buffer (overlap) on all four sides. Synoptic coverage of the selected 

study area required obtaining and using seven (7) NAIP image tiles. 

The NAIP data were selected for use in this study following concepts outlined above in the 

Literature Review section. The NAIP imagery‟s spatial resolution of 1-meter GSD is very good 

for detailed urban mapping purposes. Spectral resolution of three CIR bands might be considered 

barely adequate, or it may turn out to be not adequate – this concern will be evaluated and 

discussed later. As for temporal resolution, the NAIP data are just over two years old now – this 

is within the ASPRS committee‟s recommended 2-5 year update cycle (ASPRS, 2006, p. 101); 

however, 2006 imagery may be approaching its limit of usefulness for areas of rapid growth and 

development (NAIP imagery ideally should be acquired again in Utah in 2008 or 2009). Because 

NAIP imagery is acquired during the agricultural growing season (in this case August 2006), 

urban trees are shown with full leaf-on canopy, which supports ecological and urban forestry 

study purposes but likely obscures some detail of land cover materials directly below the canopy. 

As pertaining to considerations of cost and accessibility, the NAIP data are ideal: they were easily 

accessed and downloaded at no cost. Likewise, with respect to preprocessing concerns, the NAIP 

data are also ideal: all standard and necessary preprocessing has already been completed so the 

data are truly ready-to-use. Lastly, because the NAIP imagery was acquired near local solar noon, 

shadows are minimized (though not entirely absent). 
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Other options for data selection exist and could be considered for the purpose of producing 

detailed land cover maps of the Orem and Provo communities. Aerial hyperspectral imagery 

would undoubtedly improve on NAIP imagery‟s relatively poor spectral resolution, but at the 

price of degraded spatial resolution and much higher costs to acquire the data and process it. Very 

high spatial resolution satellite data such as IKONOS or QuickBird (or GeoEye, soon) would 

offer the advantage of excellent temporal frequency (as compared to NAIP data), but would not 

significantly improve spatial or spectral resolution and would be expensive to acquire and 

preprocess. Another possible disadvantage of the satellite imagery is that shadows may be more 

pronounced and troublesome than those appearing in the NAIP imagery. Lastly, options for data 

fusion could be considered. Combining two or more sources of data might be able to increase 

spectral resolution and could help in mitigating shadows (e.g., Yuan, 2008), or, integrating 

LIDAR data with optical imagery could be helpful in differentiating buildings from paved 

surfaces and/or dealing with tall building lean (e.g., G. Zhou & Kelmelis, 2008). However, costs 

for acquiring and preprocessing the data would likely be multiplied by a data fusion approach. 

To summarize, it appears that no remotely sensed data are ideal/perfect for the purpose of 

economical mapping of urban land cover – as previously noted, it is highly unlikely that all 

important factors can be optimized simultaneously (Baltsavias & Gruen, 2003). NAIP imagery is 

strong in attributes of spatial resolution, cost and accessibility, preprocessing, and minimized 

shadows; however, there may be limitations in its spectral and temporal resolution that could 

impact the useful accuracy of resulting land cover maps. 

Classification Scheme 

The classification scheme used for this study is based on the HERCULES system 

(Cadennaso, et al., 2007). As shown in Figure 2, there are three base classes: BuildingRoof, 

Surface, and Vegetation. The Surface class has three subclasses of Paved, BareSoil, and Water. 

The Vegetation class has two subclasses of Fine and Coarse vegetation: fine vegetation is 
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generally low to the ground and of fine texture (such as grass), and coarse vegetation is taller with 

coarser textures (such as trees and shrubs). For practical reasons that help to improve 

classification, light- and dark-toned subclasses are used for the BuildingRoof, Paved, and Water 

classes. 

 

Figure 2. Classification scheme hierarchy, based on HERCULES 

(Cadenasso, et al, 2007). Light grey boxes are summarization-level classes. 

Colored boxes show map legend colors used for the nine detailed classes. 

 

This classification scheme was designed with the intent to support multi-purpose end uses of 

a generic, detailed urban land cover map. Furthermore, the selection of this set of classes was 

influenced by concepts outlined in the literature and by empirical results from preliminary 

classification trials using the source NAIP imagery of the study area. The chosen scheme strictly 

labels classes as land cover types with no inferred land usage whatsoever. Also it follows 

recommendations for using the fewest classes possible needed to support the map‟s thematic 

objectives. The hierarchy of this scheme allows for flexible super-classing or summarization – for 
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example (as shown by the dashed box in Figure 2), all impervious surfaces can be easily grouped 

together.  

Different types of construction materials that are used for BuildingRoof and Paved urban 

features cause tonal variations in the imagery that range from very light/bright to very dark. Early 

classification experiments were attempted using multiple breakdowns of tonal variation (white, 

light-grey, medium-grey, dark-grey, black, etc.) for these cover types, but it was difficult to 

maintain consistency of the gradations, and it was observed that using many tonal subclasses did 

not appear to improve resulting accuracy. In particular (as will be discussed further), confusion 

between BuildingRoof and Paved classes did not seem to be affected very much by using many or 

few tonal subclasses. Thus two subclasses – light and dark – for both BuildingRoof and Paved 

were used. 

The Water class was ignored in the Cadenasso, et al. (2007) paper. It was added as a Surface 

type in this scheme, and because there are two primary subdivisions visually apparent in the 

imagery it has been subclassed into light and dark types. Lighter-colored water features are 

mostly man-made objects such as swimming pools, fountains, etc.; natural water features such as 

rivers, ponds, and lakes are usually very dark in the NAIP imagery. 

Shadows are not prominent in the NAIP imagery in this study area, as the scenes were 

acquired near local solar noon in early August. Using a Shadow class in the scheme was 

considered and experimented with in trial classifications, with poor results: the small shadowed 

areas were typically classified correctly, but most natural water features were misclassified as 

shadow. Without using a Shadow class the opposite result was apparent: water features were 

correctly classified, but most shadowed areas were then misclassified as one of the Water classes. 

It was judged that this latter situation was less troublesome and resulted in a more correct and 

useful map. Also, shadowed areas generally are relatively small in the NAIP imagery of this 

study area, thus it was decided to ignore shadows and accept any misclassifications of shadowed 

regions for the purposes of this study. 



www.manaraa.com

56 

 

Software Tools 

All image processing methods for this study were performed using ENVI (Environment for 

Visualizing Images, version 4.5) and ENVI Zoom software products by ITT Visual Information 

Solutions (http://www.ittvis.com/). Image mosaicking functions, the supervised classification 

functions, and accuracy assessment tools are provided in ENVI. An object-based Feature 

Extraction module is included in the ENVI Zoom product. 

The GIS package ArcMap 9.3 by ESRI (http://www.esri.com/) was used to prepare the 

Orem/Provo city boundaries vector data. Also, candidate classified image maps were exported 

from the ENVI and ENVI Zoom modules to ESRI vector shapefile format and verified in 

ArcMap. 

The Excel spreadsheet program by Microsoft (http://www.microsoft.com) was used to 

tabulate accuracy assessment data, compose error matrices, and calculate map accuracy metrics. 

Computer Processing Procedures 

Four main processing procedures were performed for this study: preprocessing, per-pixel 

supervised classification, object-based feature extraction, and accuracy assessments of resulting 

classified maps. Three candidate output maps were produced for comparison: these were 

designated as Maps A, B, and C. The main processing steps are shown in a flowchart in Figure 3. 

For all processing, the input and output data files were always placed on the computer‟s local C: 

hard drive to preclude impacts to processing times caused by network issues. 
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Figure 3. Flowchart depicting processing steps carried out to compare 

Supervised Classification with Feature Extraction. 

 

Preprocessing 

The original seven NAIP image tiles were mosaicked together to create a single large image 

file. During the mosaic procedure, feathering was performed using 100 pixels of the buffered 

margins of the source images, and the entire mosaicked output image was color balanced. Then, 

to reduce and simplify the data, it was masked by the external boundaries of the study area. The 

city boundary vector data was imported from an ESRI shapefile into an ENVI vector file then 

used to mask out portions of the mosaicked image that were outside the municipal boundaries. 

The resulting study area image file occupied 580 MB of disk space. The mosaicked and masked 

image file is shown in Figure 4. This image file was then used as input to both the supervised 
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classification procedure and the feature extraction procedure. It was also used to define ground 

reference data for the accuracy assessments. 

 

Figure 4: Study Area image, mosaicked and masked by modified city 

boundaries. 

 

Per-Pixel Supervised Classification 

In a supervised classification procedure, the analyst first “trains” the system by identifying 

sample contiguous pure regions on the image for each of the land cover classes. In ENVI, the 

Region of Interest (ROI) tool was used to define the set of training sites for the nine land cover 

classes used for this study. A minimum of six separate polygonal areas were digitized for each of 
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the nine classes, and many more were identified for most classes. Spectral values (min, max, 

mean, std dev) and histograms for the class training data were examined to evaluate class 

separability. Some likely overlaps were observed, especially between the BuildingRoof(light), 

Paved(light), and BareSoil classes; and between BuildingRoof(dark), Paved(dark), and 

Water(dark) classes. A smaller overlap appeared between VegetationFine and VegetationCoarse 

classes. Some adjustments were made to the ROI definitions and sites to try to improve class 

separations, with only partial effect. The class histograms were also evaluated for their Gaussian 

normality, as normal distributions are assumed for optimal performance of the maximum 

likelihood classifier algorithm – some classes exhibited near-normal distributions, and others 

clearly were non-normal with multiple modes and obvious skewness. The manual process to 

create the training ROI data required 2.5 hours of analyst time to complete. 

When the ROI training data were ready, several experimental classification runs were 

processed using different classifier algorithms and varying some of their input parameters. No 

formal accuracy assessments were performed on the results of these preliminary/experimental 

classifications; instead, visual evaluations were performed to identify error trends and algorithms 

that had readily apparent problems. The classifiers that were tried and judged to be unsatisfactory 

were parallelepiped, minimum distance from means, and Mahalanobis distance; each of these 

(compared to maximum likelihood) exhibited noticeable deficiencies such as leaving many 

unclassified pixels, or obviously over-classifying one cover type. Trials that used the maximum 

likelihood classifier appeared visibly better than the others. Some experiments tried using a 

probability threshold value for maximum likelihood, but these resulted in unclassified 

pixels/areas, so it was determined that no threshold should be used. The parallelepiped and 

minimum distance algorithms demonstrated the fastest processing times with each finishing the 

entire study area in 4 to 5 minutes. The maximum likelihood algorithm was somewhat slower, 

requiring between 6 and 7 minutes to classify the entire study area image. 
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The fifth (and final) trial classification using the maximum likelihood algorithm was 

determined to be acceptable and was designated as candidate classified image Map A (see Figure 

5, B). This map was subjected to a formal accuracy assessment procedure (described below in the 

Accuracy Assessments subsection). The total time required to create this map was 2 hours 30 

minutes for training by the analyst plus 7 minutes classification processing time, for a total of 2 

hours 37 minutes. 

Per-Pixel Supervised Classification plus Post-Classification Processing 

Image Map A was used as input for further processing experimentation that tried several 

post-classification procedures. Simple filters and a few other procedures were applied in attempts 

to mitigate speckling or the salt & pepper effect that is common with per-pixel classification 

procedures. Smoothing filters and median filters were tried with both 3x3 and 5x5 kernels; the 

5x5 median filter appeared (by visual analysis) to remove much of the speckling and produce 

more homogenous image objects and a generally more pleasing appearance of the map. In 

addition, a Majority Analysis procedure using a 5x5 kernel was performed – results of this 

procedure were similar but appeared preferable to the median filter. Processing time for the 

various post-classification procedures ranged from less than a minute to about 2 minutes for the 

majority analyses filter. 

Output from the majority analysis 5x5 filter was designated as candidate classified image 

Map B (see Figure 5, C), and a formal accuracy assessment procedure was performed on it 

(described below in the Accuracy Assessments subsection). The time required to create this map 

was just 2 minutes more than Map A, or a total of 2 hours 39 minutes. 
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Figure 5: Portion of Pioneer Park and Freedom Blvd in Provo. A) top, 

NAIP image; B) center, Map A supervised classification; C) bottom, Map B 

supervised classification + majority analysis 5x5 filter. 

 

Object-Based Feature Extraction 

The Feature Extraction module in the ENVI Zoom software package guides the analyst 

through the steps of the work process. Selection of numerous parameter values and an object-

based training procedure must be performed during this process. At a number of steps along the 

way the system provides a Preview viewing portal that allows immediate visual feedback that is 
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very helpful for evaluating interim results and refining the controlling parameters and training 

samples. The software also allows the analyst to move back to previous steps in the work process 

to reset or adjust parameter settings. This approach is interactive, iterative, and quite flexible; 

however, it can be difficult for the analyst to determine when an optimal solution has been arrived 

at and further experimentation would not yield improved results (i.e., the point of diminishing 

returns is not obvious). At some point the analyst needs to make the decision to move on and 

complete the classification process to actually generate an output map. Therefore, the time spent 

in this process can vary widely, depending largely on analyst experience, size of the imagery, 

number of object classes to be extracted, and how many iterations or interim evaluations are 

carried out. 

In this study, several experimental trials of the feature extraction process were performed 

using small subsets of the study area imagery. The objective of these trials was to gain experience 

in using the ENVI Zoom Feature Extraction module and to experiment with the various 

parameters to evaluate their effects on output classification results. Details of these trials are not 

documented here, but the empirical experiences gained were applied later when performing 

feature extraction to classify the complete study area image. 

The first major step of the process is segmentation of the image into image objects. This is a 

crucial step in which pixels are grouped into homogenous contiguous segments that should 

ideally correspond to real-world land cover features. The segmentation process was the focus of 

one study (Zhang & Maxwell, 2006) that developed an approach to quickly optimize the 

segmentation level (the development was done in another software package – it is not available in 

ENVI Zoom). The study by Carleer & Wolff (2006) also addressed object segmentation and 

suggested that under-segmentation (too coarse) is probably worse than over-segmentation (too 

fine), as important boundaries between distinct objects would be missed. 

In the first step of the ENVI Zoom work process a segmentation level or scale factor 

between 0 and 100 is selected and previewed. Smaller values produce more and finer segments, 
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and larger values result in fewer, coarser segments. Based on empirical results from earlier trial 

runs and the recommendation to lean towards over-segmentation (Carleer & Wolff, 2006), a 

segmentation level of 40.0 was selected and processed on the study area image (see Figure 6, A). 

The time spent on this step was 7 minutes to adjust and preview the segmentation level 

parameter, plus 20 minutes for the computer to process the entire image then display an interim 

RegionMeans segmented image, for a total of 27 minutes. 

 The next step allows refinement of the segmentation through a segment merging process. A 

merge parameter value between 0 and 100 controls how much merging of segments is to be 

performed. Using the interactive visual preview pane the merge value was adjusted and set to 

90.0. Again, it was assumed that over-segmentation would still be preferable to under-

segmentation; however, Carleer & Wolff (2006) also suggested that when texture and/or 

morphological attributes are important the segmentation level should be set high enough that 

object shapes are well defined. The setting of 90.0 for the merge parameter appeared to do a good 

job of placing segment boundaries around building roofs, prominent trees or groves/clusters of 

trees, lawns, road edges, and so forth (see Figure 6,B). Time spent on this step was 8 minutes to 

adjust and preview the merge value, plus 31 minutes to compute/process the entire image then 

display the updated RegionMeans segmented image, for a total of 39 minutes. 

The next step in the process is identified (in the ENVI Zoom software) as an advanced 

option that can apply thresholding parameters. This option was not exercised – the No 

Thresholding box was selected. 

In the next step, a set of feature attributes are computed for each segment/object, to be used 

in later steps for actual classification of the objects. Categories of feature attributes are presented 

as options for calculation and include Spatial, Spectral, Texture, Color Space, and Band Ratios. 

All attributes were selected, and it took the computer 1 hour 2 minutes to finish calculations for 

all the image segments and advance to the next step of the process. 
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Figure 6: Example of the first two steps of the object segmentation process:  

A) top, initial segmentation with scale level of 40.0; B) bottom, segments 

merged with merge level of 90.0. 

 

After indicating that classification is to be performed by selecting examples, the next step of 

the process presents a dialog box with three tabs. The first tab is used to define classes and select 

sample objects as training examples for the classes. The second tab is used to choose which of the 

calculated feature attributes are to be used by the classification algorithm. The third tab is used to 

select the classification algorithm and its parameters. 
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On the first tab, the nine classes of the classification scheme were entered into the table and 

color values were assigned for them. Then for each of the classes, many representative objects 

from the segmented image were selected as training examples. This is an interactive, iterative 

process that uses a preview viewing portal to display a sample of interim classification results. As 

image objects were added to the set of training examples for each of the nine classes, results 

shown in the preview portal were refreshed to show the effects of the updated training 

information. Misclassification errors were easily seen, and the set of objects selected were 

modified by the analyst (objects added or removed) to improve the interim sample result shown 

in the preview. It should be noted that parameter settings on the other two tabs of the dialog box 

also factor into the interim classification results displayed in the preview portal. 

The second tab of the dialog box allows for selection of the set of feature attributes 

(previously calculated) that are to be used by the classifier algorithm. The study by Carleer & 

Wolff (2006) analyzed how various combinations of feature attributes affected resulting 

classification accuracy. They noted that accuracy can be compromised by using all available 

attributes, therefore “selection of relevant features [attributes] for each class is essential” (p. 

1049). Unfortunately, in the ENVI Zoom work process, this dialog box does not provide the 

means to select separate sets of attributes per class; rather, one list is selected that applies 

uniformly across all classes. Based on empirical results from earlier trial runs, the following 

attributes were selected:  

 Spectral: avg_band1, std_band1, avg_band2, std_band2, avg_band3, std_band3 

 Texture: tx_range. tx_mean, tx_variance, tx_entropy 

 Spatial: length, compact, convexity, solidity, formfactor, elongation, rect_fit 

 Customized: bandratio, intensity 

The third tab of the dialog box is used for selection of the classifier algorithm. The default 

option to use the K-Nearest Neighbor classifier was chosen with a K parameter value of 1. 
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At this point in the procedure, the analyst is able to move between all three of the 

aforementioned dialog tabs to make selections and adjustments and view their effects on the 

sample interim classification result shown in the preview portal. When all is deemed optimal (or 

satisfactory), the analyst clicks the Next button which launches the classification computation 

process on the entire dataset. As mentioned previously, it is possible to spend a large amount of 

time iteratively trying out options, “tweaking” the training objects, etc.; it‟s not easy to discern 

when one should stop further tweaking and hit the Next button. In this study, the analyst spent 1 

hour 53 minutes defining classes, selecting the training objects, making and adjusting other 

choices and parameter settings, and viewing preliminary classification samples in the preview 

portal. After clicking the Next button, the computer required 58 minutes to classify the entire 

study area image and display the resulting classified map image. 

The final steps of the ENVI Zoom feature extraction process allow the classified image to be 

saved to an ENVI image file and/or to create ESRI-compatible vector shapefiles. Both of these 

options were exercised. The ENVI image file created was designated as candidate classified 

image Map C. This image was subsequently opened in the ENVI program and was subjected to a 

formal accuracy assessment procedure (described below in the Accuracy Assessments 

subsection). The operation to save the classified map as an ESRI shapefile performed a raster-to-

vector conversion operation that generated smoothed vector polygons in the output shapefile. 

Exporting both types of files required 9 minutes of processing time. 

The total time spent in the ENVI Zoom feature extraction process to produce the classified 

image Map C was about 5 hours and 10 minutes. 

Accuracy Assessments 

A stratified random sampling methodology was employed to assess the accuracies of the 

three candidate image maps. The minimum number of total sample points needed was determined 

using the formula for the binomial probability theory (Fitzpatrick-Lins, 1981) as follows: 
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where: N  is  minimum sample size 

  Z  is  2 (for a 95% confidence level) 

  p  is  expected overall accuracy of the map (percent) 

  q  is  100 – p 

  E  is  allowable error (percent) 

The overall accuracy for Map A (created by the supervised classification procedure) was 

expected to be about 65%, based on visual evaluations of the map and overall accuracy values 

reported in the literature. A value of 5% was used for the allowable error (as suggested by J 

Jensen, 2005, p. 501). Using these values in the formula, the required minimum sample size (N) 

was calculated to be 364 points. 

The ENVI software function for generating random points was used to create and randomly 

distribute the sample points. Most of the classes were allocated between 35 and 68 sample points 

each, and the two Water classes were allocated about 25 points each. The two Water classes (light 

and dark) occupy much smaller areas of the map than other classes, therefore proportionally 

fewer sample points were allocated for them. 

A Microsoft Excel spreadsheet was created to record and tabulate accuracy data for the 

assessment procedure. Rows of the spreadsheet list the sample points. Four additional columns 

were used to record the land cover type for each sample pixel: one column for the ground 

reference data, and three columns for each of the three candidate classified image maps A, B, and 

C. Coded values 1 through 9 were used to represent the land cover classes of the scheme used for 

this study (see Table 2).  

Ground reference data were determined by visual interpretation of the original NAIP study 

area CIR image. A few points could not be clearly interpreted using the NAIP imagery; in those 

cases GoogleEarth imagery was consulted to help determine the correct cover type. 

N  = 
Z2 (p) (q) 

 E2  
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Table 2: Class codes used for accuracy assessments 

Class code Class label 

1 BuildingRoof(lite) 

2 BuildingRoof(dark) 

3 Paved(lite) 

4 Paved(dark) 

5 Water(lite) 

6 Water(dark) 

7 Vegetation,Fine 

8 Vegetation,Coarse 

9 BareSoil 

 

In the ENVI program, the original NAIP study area imagery and all three classified image 

maps were opened in display groups and linked together. The ROI tool and the Cursor 

Location/Value tool were used to step through the sample points one-by-one and examine how 

each sample pixel was classified in each image. Corresponding class code values were entered 

into the spreadsheet in the appropriate columns. 

After class codes were recorded for all the sample points, error/confusion matrices were then 

constructed in the spreadsheet file, following J Jensen (2005, p. 499). A separate error matrix was 

built for each of the three classified image maps. The resulting error matrices are shown in Tables 

3, 4, and 5. Values in the matrices were then used to calculate the accuracy metrics of Producer‟s 

Accuracy, User‟s Accuracy, Overall Accuracy, and Kappa coefficient, for each map. 
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RESULTS AND DISCUSSION 

This section presents the results of accuracy assessments performed on the three classified 

image maps. Also, the production time metrics (amount of time required for each processing step) 

are summarized, followed by some interpretation of the results and discussion of possible causes 

of classification errors exhibited in the output maps. Sample portions of the classified maps 

created in this study are shown in Figure 7. 

Accuracy Metrics 

Table 3 shows the error/confusion matrix for Map A, the classified image map created using 

supervised classification with no post-classification processing. The accuracy results cannot be 

considered very good, with Overall Accuracy of only 56.5% and a Kappa coefficient of 0.502. 

Table 3: Error matrix for Map A (supervised classification) 

  Ground Reference Data   UA: 

  1 2 3 4 5 6 7 8 9 tot pct 

M
a

p
 A

 -
 C

la
ss

if
ie

d
 D

a
ta

 

1 9   7           1 17 52.9% 

2   13 3 7 1         24 54.2% 

3 25   37 9         12 83 44.6% 

4 2 18 2 36   5   1   64 56.3% 

5 1   1 3 27 5   3   40 67.5% 

6       1   15     2 18 83.3% 

7     2 1     17 2 4 26 65.4% 

8 2 2 4 4     47 57 4 120 47.5% 

9 4 2 9       1   45 61 73.8% 

  tot 43 35 65 61 28 25 65 63 68 453  

PA: pct 20.9% 37.1% 56.9% 59.0% 96.4% 60.0% 26.2% 90.5% 66.2%  256 

             

         56.5% Overall Accuracy 

         0.502 Kappa     
 

Producer‟s accuracy (PA) values for several classes were extremely poor, particularly 

BuildingRoof(lite)[1],  BuildingRoof(dark)[2], and the Vegetation,Fine[7] classes which all had 

PA‟s well below 50%. PA is a measure of errors of omission; thus, a PA value for 

BuildingRoof(lite)[1] of 20.9% (for example) means that 79.1% of actual light-toned building 
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roofs were omitted from this class on the map and were misclassified as something else – in this 

case mostly Paved(lite)[3]. At the high end, the PA value of 90.5% for the Vegetation,Coarse[8] 

class indicates that less than 10% of actual coarse vegetation were omitted from this class on the 

map. 

User‟s accuracy (UA) values were likewise quite poor, especially for the Paved(lite)[3] and 

Vegetation,Coarse[8] classes. Since UA is a measure of errors of commission, the UA value of 

44.6% for the Paved(lite)[3] class means that about 55% of all pixels assigned (committed) to this 

class were misclassified – they are not actually light pavement features. The best UA value on 

this map was for the Water(dark)[6] class; its UA measure of 83.3% indicates that less than 17% 

of the pixels assigned to this class were assigned incorrectly and actually should belong to other 

classes. 

Map B was produced by applying a post-classification majority analysis 5x5 filter to Map A. 

The result was visually more pleasing, as the speckling or salt & pepper effect was reduced and 

the map has a more homogenous appearance. Table 4 shows the error matrix for this map. 

Table 4: Error matrix for Map B (supervised classification + majority analysis filter) 

  Ground Reference Data   UA: 

  1 2 3 4 5 6 7 8 9 tot pct 

M
a

p
 B

 -
 C

la
ss

if
ie

d
 D

a
ta

 

1 11   8           1 20 55.0% 

2   13 2 10 1 1       27 48.1% 

3 27 1 37 7         13 85 43.5% 

4 2 16 1 37   4   1   61 60.7% 

5 1   1 2 27 4   1   36 75.0% 

6           14     2 16 87.5% 

7     1       18 1 2 22 81.8% 

8   3 8 5   1 45 60 5 127 47.2% 

9 2 2 7     1 2   45 59 76.3% 

  tot 43 35 65 61 28 25 65 63 68 453  

PA: pct 25.6% 37.1% 56.9% 60.7% 96.4% 56.0% 27.7% 95.2% 66.2%  262 

             

         57.8% overall accuracy 
         0.517 Kappa     

 



www.manaraa.com

71 

 

The accuracy values for Map B were only very slightly improved. The Overall Accuracy of 

57.8% compares to Map A‟s value of 56.5%, and the Kappa was improved from 0.502 to 0.517. 

The pattern of Producer‟s and User‟s accuracies was essentially the same, with only slight 

improvements evident in these measures for a few classes 

Accuracy measures for Map C, which was produced using the object-based Feature 

Extraction method, were significantly better than for the other two maps. Table 5 shows the error 

matrix for Map C. 

Table 5: Error matrix for Map C (feature extraction) 

  Ground Reference Data   UA: 

  1 2 3 4 5 6 7 8 9 tot Pct 

M
a

p
 C

 -
 C

la
ss

if
ie

d
 D

a
ta

 

1 34   12           4 50 68.0% 

2 1 23 2 15   2   2   45 51.1% 

3 4   42           9 55 76.4% 

4   11   39           50 78.0% 

5 2   1 4 28       1 36 77.8% 

6     1 3   23 1 15 4 47 48.9% 

7             52 8   60 86.7% 

8   1         11 38   50 76.0% 

9 2   7       1   50 60 83.3% 

  tot 43 35 65 61 28 25 65 63 68 453  

PA: pct 79.1% 65.7% 64.6% 63.9% 100.0% 92.0% 80.0% 60.3% 73.5%  329 

             

         72.6% overall accuracy 

         0.691 Kappa     
 

Overall Accuracy for Map C was 72.6%, almost 15 percentage points better than Map B, and 

the Kappa statistic of 0.691 was much better than Map B‟s value of 0.517. While these 

improvements are significant, the metrics still indicate considerable misclassifications in the map. 

PA values were better, with the lowest value reported for the Vegetation,Coarse[8] class at 60.3% 

(meaning almost 40% of coarse vegetation was omitted from this class). UA values also were 

generally improved over the other maps, but one class, Water(dark)[6], was still below 50% and 

the BuildingRoof(dark)[2] class was just barely better than 50% for its UA value. 
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Figure 7: Sample output classified maps, showing a portion of downtown 

Provo: A) top, original NAIP image; B) center, Map B; C) bottom, Map C. 

 

Cost/Time Metrics 

A complete accounting of all possible cost factors to create land cover maps was beyond the 

scope of this study. Rather, the time that was expended in the implementation of the candidate 

procedures was used as a simplified proxy for costs. 
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For the specific purposes of this study, the intent of timing the procedures was to make a 

side-by-side comparison in a simulated production environment. Accordingly, the time that was 

spent in obtaining, organizing, and preprocessing (mosaicking and masking) the source imagery 

was not recorded. Likewise, time expended in the numerous preliminary or experimental runs of 

classification procedures done in this study was not recorded and not included in the accounting 

of production times. Also, the time spent performing accuracy assessments on the derived 

classified maps was not recorded or included in the reported elapsed times. Therefore, the times 

reported do not represent the total amount of time that would actually be required – start-to-finish 

– to create classified land cover maps. Rather, they only show the times for the steps that were 

unique to the performance of each candidate procedure. Moreover, the reported times are 

intended to represent the efforts of a moderately skilled analyst working in a production 

environment using a personal computer with adequate hardware and performance characteristics. 

The first map (Map A) was created using the supervised classification procedure and the 

maximum likelihood classifier algorithm; training time by the analyst was 2 hours 30 minutes and 

computer processing time was 7 minutes, for a total of 2 hours 37 minutes. Map B was created by 

post-processing Map A, which required an additional 2 minutes to process, for a total of 2 hours 

39 minutes. Map C was produced using the Feature Extraction module of ENVI Zoom; training 

and setup time by the analyst was 2 hours 10 minutes and computer processing for the various 

steps was 3 hours 0 minutes, for a total of 5 hours 10 minutes. 

Processing was performed (in both procedures) on the entire mosaicked and masked image 

data file at once, instead of in subsets or separate tiles. Due to the large size of the input image 

file (approx. 580 MB) it is possible that limitations of computer resources – such as main memory 

and virtual page file size – could have been a factor in computer processing speed and elapsed 

times. In particular, the ENVI Zoom Feature Extraction work process performed a total of four 

processing passes through the data (initial segmentation, segment merging, attribute 

computations, and nearest neighbor classification), compared to just a single pass for per-pixel 
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supervised classification. It is possible that the total processing time for Map C (feature 

extraction) would be different than reported in this study if the image were to be processed by 

subsets or tiles. 

The accuracy and time metrics for the three classified image maps are summarized in Table 

6. 

Table 6: Summary of accuracy and time metrics for the three classified maps 

Map Method 

Overall 

Accuracy 

Kappa 

coefficient 

Production 

Time (hrs:min) 

A 
Supervised 

Classification 
56.5% 0.502 2:37 

B 

Supervised 

Classification + 5x5 

Majority filter 

57.8% 0.517 2:39 

C Feature Extraction 72.6% 0.691 5:10 

 

Discussion 

For purposes of the discussion from this point forward in this paper, Map A will be ignored 

since Map B essentially embodies everything of Map A but is of slightly better quality. 

Therefore, Map B will represent output from the per-pixel supervised classification method, and 

Map C will represent output from the object-based feature extraction method for comparison 

purposes (see Figure 7). 

The relationship between map quality and the time/cost to produce a map is demonstrated by 

the summary metrics shown in Table 6. Although many of the same classification problems were 

manifested by both procedures, the object-based method produced a more accurate map. As 

expected, it also took longer, though the difference in time between the two methods was mostly 

due to computer processing of the data. Time spent by the analyst in defining parameters and 

performing training was not significantly different for the two methods and was actually 

somewhat quicker for the object-based feature extraction method. Computer processing using the 

feature extraction method – to segment the image, compute object attributes, and classify the 
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objects – was 3 hours compared to the per-pixel maximum likelihood classification process which 

took 7 minutes (but as noted above, it may have been slowed by processing the entire large image 

file at once). 

Significant misclassifications are evident in all the maps produced in this study. The most 

serious confusions were between impervious classes of BuildingRoof and Paved. Neither 

processing method was able to consistently differentiate between light-toned BuildingRoofs and 

light-toned Paved surfaces; also, BareSoil was frequently confused with both of those two 

classes. Likewise, the darker-toned subclasses of BuildingRoof and Paved were often confused 

with each other, and sometimes were also confused with dark-toned Water. These confusions can 

be attributed to the fact that similar construction materials are often used for building roofs and 

pavement, so their spectral reflectance properties are very similar and sometimes identical 

(Herold, Gardner, et al., 2002). Newly paved asphalt streets have a very dark, nearly black 

appearance in the imagery, and thus were sometimes confused with natural water features which 

also have very dark spectral properties. 

The Vegetation classes generally were separated quite well from other classes, but exhibited 

some confusion between the subclasses of Fine and Coarse vegetation. In Map B (supervised 

classification) the Vegetation,Coarse class dominated over the Fine class – many areas of grass 

were misclassified as trees/shrubs. The feature extraction method (Map C) generally did a better 

job of differentiating between Fine and Coarse vegetation, but the opposite misclassifications 

occurred where some light-colored trees were classified as Fine vegetation. Also, Map C shows 

confusion between Vegetation,Coarse and dark-colored Water, most likely due to within-canopy 

shadows. 

Shadows in very high spatial resolution imagery of urban areas are a conundrum – they 

undoubtedly were a cause of classification confusion in this study. Even though shadows in the 

NAIP data may not be as pronounced as in some satellite imagery, they nevertheless exist and 

have an important effect. In this study, preliminary classification experiments using a single, 
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separately-defined Shadow class had poor results as most dark-colored water features were 

misclassified as shadows. With no shadow class the water features were classified fairly 

accurately; however, many of the shadows were then classified as water. A major cause of 

reduced accuracy for the Vegetation,Coarse[8] class in Map C was within-canopy shadows being 

misclassified as Water(dark) – this can be seen in Table 5, the error matrix for Map C. The  

 

Figure 8: Examples of shadows (cast by trees and buildings) misclassified 

as BldgRoof(dark), Paved(dark) or Water(dark), in area of north Orem: A) 

top, original NAIP image; B) bottom, Map C. A few other classification 

errors are also apparent. 
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Producer‟s accuracy for Vegetation,Coarse[8] was severely impacted by 15 omissions that were 

classified as Water(dark)[6], and the User‟s accuracy for Water(dark)[6] was severely impacted 

by incorrectly assigning 15 map objects that should have been Vegetation,Coarse[8]. Other 

shadow effects were observed while performing the accuracy assessment but are harder to pick 

out from the error matrices. For example, shadows from both buildings and trees that fell on 

various other features were often misclassified as either BuildingRoof(dark), Paved(dark), or 

Water(dark) as shown in Figure 8. 

Other consequences of using high spatial resolution imagery also became evident during this 

study. Generally, the detail available in imagery such as NAIP is welcome and useful. However, 

“noise” effects frequently interfered with correct classifications and degraded the accuracy and 

usefulness of the derived land cover maps. Vehicles on roads and parking lots, visible in the 

NAIP imagery, were one example of this phenomenon. Cars and trucks (which are larger than the 

1-meter pixel size of the NAIP imagery) exhibit many different colors and spectral reflectance 

properties and thus caused anomalous classification results. Vehicles caused pockets and blips to 

appear on roadways and other paved surfaces, which were classified as Water, Vegetation, 

BuildingRoof, or BareSoil. These annoying and distracting noise elements affected the 

accuracy/quality of the maps and their visual appearance, as shown in Figure 9. Similarly, objects 

on building rooftops such as mechanical and/or HVAC equipment, etc. caused the same kind of 

noisy classification anomalies. Another situation involved markings on roadways, parking lots, 

and other surfaces. Even though many painted stripes and other marks on roads are smaller than 

1-meter wide, they still show up strongly in the NAIP imagery and caused classification 

problems. 

Various types of synthetic or artificial surface features were also a cause of some 

classification accuracy problems. In some cases these items did not fit any of the defined classes 

in the scheme. For example, on the west side of the BYU campus is a large artificial turf field 

used for sports practices. Due to its synthetic materials it exhibits spectral properties similar to 
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dark pavement and looks very dark in the CIR NAIP imagery (even though this feature appears 

green in true color). Not surprisingly, both Map B and C classified it as Paved(dark). However, it 

is a pervious surface (allows rainwater to drain through it) so for some map purposes such as  

 

Figure 9: Anomalous classifications of “noisy” objects, along University 

Parkway in Orem: A) top, original NAIP image; B) center, Map B; C) 

bottom, Map C. Other classification errors are also apparent. 
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environmental/ecological studies or imperviousness studies this feature was probably incorrectly 

classified. Other surface features like this included painted tennis courts that were classified as 

vegetation, and wooden or composite decks that were classified as bare soil, etc. Adding some 

specialized classes into the scheme might be helpful to deal with these types of surface materials, 

but might also introduce other problems (more classes tends toward lower accuracy), or could 

start crossing the line into defining land use classes. 

It is likely that the level of experience and knowledge on the part of the analyst/operator can 

be a factor in both quality and cost. More experienced and knowledgeable individuals will have 

developed expertise with the tools and gained empirical understanding of how parameters and 

variables influence the outcome. Thus, it can be expected that an experienced analyst and user of 

the software tools can produce more accurate maps in less time than a novice. In this study, 

relative inexperience may have been a contributing factor in poor classification accuracies and 

slow performance of some tasks. 
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CONCLUSIONS 

The hypotheses of this study, as stated in the Introduction, have been supported. The object-

based feature extraction process did create a more accurate urban land cover map than the per-

pixel supervised classification procedure using the same NAIP CIR imagery. And as 

hypothesized, feature extraction did require more investment of analyst/operator time and 

computer processing time than supervised classification. It can be concluded that both of these 

methods are economical, approachable, understandable, repeatable, and thus could be made 

operational more easily than other more complex processing methods, if accuracy/quality 

requirements can be met.  

This study has demonstrated a clear trade-off between the time/cost expended to execute the 

two methods and the resulting quality of the maps. The additional time needed to apply post-

classification filtering to per-pixel classified Map A was negligible and helped to improve 

accuracy while also producing a more visually appealing Map B. To make the more accurate Map 

C, the object-based feature extraction method required more computer processing time than the 

easier and quicker supervised classification method. In the context of this study it is not 

appropriate to make value judgments as to which of the two is the better approach; rather, it is the 

intention to make clear that higher quality land cover maps have cost/time consequences.  

Classification accuracies achieved in this study were generally poor and are likely to be 

unacceptable for most real-world applications of urban land cover maps. The combination of 

NAIP imagery and the particular implementation of the two processing methods did not achieve 

the desired goal of economical production of accurate maps. In point of fact, this study 

emphasized economy (or cost control) over accuracy, and the results clearly mirrored that trade-

off. Options for improving accuracy (over what was achieved in this study) are numerous, but 

they all would involve more effort, time, and/or cost. Some viable approaches for improving 

accuracy are discussed below along with accompanying cost considerations. Still, it should be 
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emphasized that if the primary objective is cost containment, then opportunities for improving 

map quality will be limited. 

One of the research questions asked whether NAIP 1-meter CIR imagery would be 

appropriate and useful for creating high quality maps of urban land cover. Unfortunately this 

study cannot offer a definite conclusion or make a positive recommendation on this issue. Many 

of the accuracy problems evident in the derived land cover maps are probably directly attributable 

to the relatively poor spectral resolution of the NAIP data. Further research could address ways to 

improve the spectral resolution of such imagery without significantly increasing costs or 

degrading other important characteristics such as high spatial resolution. It should also be noted 

that NAIP imagery may not be available for all urban areas, and that the NAIP program could be 

modified or even discontinued in the future. Low cost alternatives to NAIP data might include 

custom-flown aerial imagery, as recommended by Walker & Blaschke (2008). However, where 

budgets allow significant expenditures for imagery, options besides (or in addition to) aerial CIR 

imagery should be considered and should focus on spectral considerations, including the 

possibility of using hyperspectral data fused with high spatial resolution multispectral imagery 

(Gamba & Dell‟Acqua, 2007). 

A second research question asked whether per-pixel supervised classification is able to 

produce urban land cover maps of usable accuracy. Unfortunately, based solely on the results 

obtained in this study and using the NAIP imagery, the answer seems to be “no”. With Map B‟s 

overall accuracy of less than 60% most end-use applications would be unwise to trust it. This 

result confirms findings of several researchers who noted that conventional per-pixel 

classification methods may not perform well with imagery that is very high spatial resolution and 

relatively low spectral resolution (Herold, Gardner et al., 2002; Thomas et al., 2003; Yuan & 

Bauer, 2006). Because per-pixel methods use only spectral data they are not always able to make 

consistent distinctions between classes of land cover with similar reflectance spectra (Herold, 

Scepan et al., 2002; Myint, 2007). Nevertheless, if the classifications in Map B of this study were 
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summarized into Impervious, Water, Vegetation, and BareSoil, then perhaps some applications 

(for example, measurement of imperviousness or vegetation cover) might find it acceptably 

accurate. And as noted above, augmenting the NAIP imagery with better spectral data would 

likely lead to improvements in classification accuracy by this method and others. 

One technique that was not fully implemented in this study, and which could have a positive 

effect on accuracy, would be to further subdivide the classification scheme into many more 

subclasses, then do post-classification aggregation into the final high-level end-use classes. This 

was done only in a very limited sense in this study, with dark and light subclasses of 

BuildingRoof, Paved, and Water classes. A more complete implementation of this technique 

could subclass the BuildingRoof and Paved classes into several subclasses that better capture the 

fine tonal gradations evident in the imagery. It could also subclass BareSoil to better match the 

variations found in that class (light sand, brown dirt, rock outcrops, etc.), and even the Vegetation 

classes could possibly benefit from having more defined subclasses to fit variations in color and 

tonal patterns. Special subclasses for artificial/synthetic surfaces (i.e., artificial turf, painted tennis 

courts, etc.), and perhaps even for vehicles (as subclasses of Paved) might work in this approach 

to achieve better accuracy. Costs for employing this technique would mostly be for additional 

analyst time needed to define the expanded class scheme and perform more detailed training of 

the system, and more analyst time for the post-classification aggregation into the desired end-use 

classes. 

Many of the classification errors observed in this study were confusions between paved 

surfaces and building roofs. Due to similarities in construction materials (for example, asphalt 

shingles on roofs and asphalt paved streets or parking lots) these confusions are understandable, 

and may not be completely resolvable even with higher spectral resolution data. Given that the 

chief difference between these two land cover types is that of elevation (building roofs are almost 

always higher than surrounding paved features), it may be possible to use ancillary LIDAR data 
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to help discriminate between them. Further research in the area of fusing LIDAR with optical 

multispectral data could be valuable for urban land cover applications. 

Likewise, other ancillary data could be used to supplement the source imagery and assist in 

the classification process. This might be a realistic and low cost option for municipal agencies 

that maintain a GIS database for their area of responsibility. One example would be to use a GIS 

vector layer of city street centerlines: surface pixels or objects could be analyzed for proximity to 

a street centerline and then assigned to a Paved class if they are within a defined buffer distance. 

Similarly, GIS data for water bodies could be useful to help properly classify water surface 

features, and so forth. 

Shadows remain a vexing problem in detailed urban remote sensing. Shadows were not dealt 

with in this study and as a result were a cause of certain classification errors. A simplistic 

preliminary approach, which experimented with using a defined shadow class, was initially 

attempted and then discarded. As suggested by some researchers (e.g., Dare, 2005) several 

detailed shadow subclasses could be used (e.g., shadow in tree canopy, shadow falling on 

pavement, shadow falling on fine vegetation, etc.), which could then be aggregated post-

classification into the appropriate super-classes. This approach would be relatively low cost and 

would likely yield some accuracy improvements. Another potential help might be to follow the 

approach of Yuan (2008): fusing two imagery sources such as NAIP and QuickBird that have 

shadows at different angles which might largely cancel each other out. Other on-going research is 

mentioned in the literature; further research work to develop cost-effective methods of detecting 

and mitigating shadows and their effects would be beneficial to urban remote sensing 

applications. 

In summary, automated, detailed urban land cover mapping from remotely sensed imagery is 

difficult, as mentioned by several researchers (e.g., Mesev, 2003) and confirmed by this study. It 

is especially challenging to produce accurate urban land cover maps from inexpensive high 

spatial resolution imagery in an economical process. Although the ultimate goal was not fully 
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achieved, this study has perhaps established a cost-control baseline. Using NAIP imagery 

acquired for no cost and methods that are probably the most economical currently in practice, the 

emphasis on cost containment was well demonstrated – it would be hard to devise a less 

expensive approach. Modifications can be built on this baseline, to implement some of the 

numerous options for imagery augmentation and methodology enhancement to achieve better 

resultant map accuracy. 
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APPENDIX A 

NAIP Imagery Metadata File (sample) 

Shown below is the metadata file q1721_ne_NAIP2006_CIR.txt which accompanied the 

downloaded NAIP image tile for the PROVO NE quarter quad. 

Metadata: 

  Identification_Information: 

    Citation: 

      Citation_Information: 

        Originator: North West Group 

        Publication_Date: 20070118 

        Geospatial_Data_Presentation_Form: remote-sensing image 

        Title: NAIP CIR Digital Ortho Photo Image 

        Publication_Information: 

          Publication_Place: Calgary, Alberta 

          Publisher:  North West Group 

    Description: 

      Abstract: 

        This data set contains color infrared imagery from the National Agricultural 

        Imagery Program (NAIP).  NAIP acquires digital ortho imagery 

        during the agricultural growing seasons in the continental U.S. 

        A primary goal of the NAIP program is to enable availabilty of 

        ortho imagery within a year of acquisition. NAIP provides two 

        main products: 1 meter ground sample distance (GSD) ortho 

        imagery rectified to a horizontal accuracy of within +/- 5 

        meters of reference digital ortho quarter quads (DOQQS) from 

        the National Digital Ortho Program (NDOP); and, 2 meter GSD 

        ortho imagery rectified to within +/- 10 meters of reference 

        DOQQs.  The tiling format of NAIP imagery is based on a 3.75' 

        x 3.75' quarter quadrangle with a 360 meter buffer on all four 

        sides.  NAIP quarter quads are rectified to the UTM coordinate 

        system NAD83.  NAIP imagery can obtain as much as 10% cloud 

        cover per tile. 

      Purpose: 

          The 1 meter GSD NAIP CIR is intended as a source for current 

          digital ortho imagery in Utah 

          GIS and for other uses that require ortho imagery 

          acquired during the agricultural growing season. 
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    Time_Period_of_Content: 

      Time_Period_Information: 

           Single_Date/Time: 

             Calendar_Date: 20060818 

      Currentness_Reference: Ground Condition 

    Status: 

      Progress: Complete 

      Maintenance_and_Update_Frequency: Irregular 

    Spatial_Domain: 

      Bounding_Coordinates: 

        West_Bounding_Coordinate:  -111.6875 

        East_Bounding_Coordinate:  -111.6250 

        North_Bounding_Coordinate:  40.2500 

        South_Bounding_Coordinate:  40.1875 

    Keywords: 

      Theme: 

        Theme_Keyword_Thesaurus: None 

        Theme_Keyword: farming 

        Theme_Keyword: Digital Georectified Image 

        Theme_Keyword: Georectified Image 

        Theme_Keyword: Georectified 

        Theme_Keyword: Georectification 

        Theme_Keyword: Georeferenced Image 

        Theme_Keyword: Georeferenced 

        Theme_Keyword: Quarter Quadrangle Centered 

        Theme_Keyword: Color Infrared NAIP 

        Theme_Keyword: Aerial Compliance 

        Theme_Keyword: Compliance 

        Theme_Keyword: North West Group 

        Theme_Keyword: United States Department of Agriculture (USDA) 

      Place: 

        Place_Keyword_Thesaurus: Geographic Names Information System 

        Place_Keyword: UT 

        Place_Keyword: Utah 

        Place_Keyword: 49049 

        Place_Keyword: UT049 

        Place_Keyword: UTAH CO UT FSA 

        Place_Keyword: 4011151 

        Place_Keyword: PROVO, NE 

        Place_Keyword: PROVO 

    Access_Constraints: There are no limitations for access. 

    Use_Constraints: 
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      None 

       

    Point_of_Contact: 

      Contact_Information: 

        Contact_Organization_Primary: 

          Contact_Organization: North West Group 

        Contact_Address: 

          Address_Type: mailing and physical address 

          Address: Suite 212, 5438-11th Street NE 

          City: Calgary 

          State_or_Province: Alberta 

          Postal_Code: T2E 7E9 

          Country: Canada 

        Contact_Voice_Telephone: 403-295-0694 

        Contact_Facsimile_Telephone: 403-295-2444 

        Contact_Electronic_Mail_Address: info@nwgeo.com 

    Browse_Graphic: 

      Browse_Graphic_File_Name: None 

      Browse_Graphic_File_Description: None 

      Browse_Graphic_File_Type: None 

    Native_Data_Set_Environment: Unknown 

  Data_Quality_Information: 

    Logical_Consistency_Report: 

      NAIP 3.75 minute tile file names are based 

      on the USGS quadrangle naming convention. 

    Completeness_Report: None 

    Positional_Accuracy: 

      Horizontal_Positional_Accuracy: 

        Horizontal_Positional_Accuracy_Report: 

          The positional accuracy for the digital data 

          is tested by visual comparison to a data source 

          with a higher order of accuracy. 

    Lineage: 

      Source_Information: 

        Source_Citation: 

          Citation_Information: 

            Originator: North West Group 

            Title: PROVO, NE 

            Publication_Date: 20070118 

            Geospatial_Data_Presentation_Form: remote-sensing image 

        Type_of_Source_Media: Digital Linear Tape (DLT) 

        Source_Time_Period_of_Content: 
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          Time_Period_Information: 

            Single_Date/Time: 

              Calendar_Date: 20060818 

          Source_Currentness_Reference: 

            Aerial Photography Date for aerial photo source. 

        Source_Citation_Abbreviation: Georectifed Image 

        Source_Contribution: Digital Georectifed Image. 

 

      Process_Step: 

        Process_Description: 

          Imagery was flown with Leica ADS40 digital sensors to  

          capture 0.9m raw data.  Raw data is then downloaded using 

          Leica GPro software into 12 bit TIFF format.  The raw TIFF 

          imagery is then georeferenced and reprojected using GPS/INS 

          200Hz exterior orientation information (x/y/z/o/p/k) to 

          allow stereo viewable imagery.  This stereo viewable imagery 

          is processed with the GPro/LPS automatic point matching  

          algorithm to determine common match points every 2000 pixels 

          across the imagery strip and 333 pixels along strip. This 

          pattern includes dual rows of line ties to the adjacent line 

          of imagery.  The resulting point data is imported in Leica 

          ORIMA and used to perform a full bundle adjustment of the 

          imagery point data.  Any blunders are removed, and weak areas 

          are manually supplemented to ensure good coverage of points. 

          Once the point data is cleaned and point coverage is 

          acceptable vertical control points from the prior generation 

          MDOQQ's are introduced in the corners and center of the block 

          being adjusted.  This control is used to perform any datum 

          shift (x/y/z and rotation) to ensure the new adjusted imagery 

          fits the existing MDOQQ reference imagery.  The output from 

          this bundle adjustment process is revised exterior orientation 

          data for the sensor with any GPS/INS, datum, and sensor 

          calibration errors modeled and compensated for.  Using this 

          revised EO data orthorectified image strips are created using 

          the USGS DEM.  The 10m DEM is used where available and 30m 

          DEM is used elsewhere.  The orthorectified strips are overlaid 

          over the existing MDOQQ compressed files to ensure accuracy is 

          met by a visual inspection and manually measuring features. 

          Once the accuracy of the orthorectified image strips are 

          validated the strips are processed with a NWG proprietary 

          dodging package that compensates for the bi-directional 

          reflectance function that is caused by the sun's position 
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          relative to the image area.  This compensated imagery is 

          then imported into Inpho's OrthoVista 4.0 package which is 

          used for the final radiometric balance, and DOQQ sheet creation. 

          These final DOQQ sheets contain a 300m minimum buffer.  These 

          final DOQQ tiles are edge inspected to the existing MDOQQ sheets 

          for accuracy validation.  A visual inspection is performed of 

          the DOQQ to ensure the radiometric quality and content of the 

          DOQQ looks good. 

        Process_Date: 20070118 

  Spatial_Data_Organization_Information: 

    Indirect_Spatial_Reference: Utah County, UT 

    Direct_Spatial_Reference_Method: Raster 

    Raster_Object_Information: 

      Raster_Object_Type: Pixel 

      Row_Count: 1 

      Column_Count: 1 

  Spatial_Reference_Information: 

    Horizontal_Coordinate_System_Definition: 

      Planar: 

        Grid_Coordinate_System: 

          Grid_Coordinate_System_Name: Universal Transverse Mercator 

          Universal_Transverse_Mercator: 

            UTM_Zone_Number: 12 

            Transverse_Mercator: 

              Scale_Factor_at_Central_Meridian: 0.9996 

              Longitude_of_Central_Meridian: -111.0 

              Latitude_of_Projection_Origin: 0.0 

              False_Easting: 500000 

              False_Northing: 0.0 

        Planar_Coordinate_Information: 

          Planar_Coordinate_Encoding_Method: row and column 

          Coordinate_Representation: 

            Abscissa_Resolution: 1 

            Ordinate_Resolution: 1 

          Planar_Distance_Units: meters 

      Geodetic_Model: 

        Horizontal_Datum_Name: North American Datum of 1983 

        Ellipsoid_Name: Geodetic Reference System 80 (GRS 80) 

        Semi-major_Axis: 6378137 

        Denominator_of_Flattening_Ratio: 298.257 

  Entity_and_Attribute_Information: 

    Overview_Description: 
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      Entity_and_Attribute_Overview: 

        24-bit pixels, 3 band color infrared(RGB) 

        values 0 - 255 

      Entity_and_Attribute_Detail_Citation: None 

  Distribution_Information: 

    Distributor: 

      Contact_Information: 

        Contact_Person_Primary: 

          Contact_Person: Supervisor Sales Services Branch 

          Contact_Organization: North West Group 

        Contact_Address: 

          Address_Type: mailing and physical address 

          Address: Suite 212, 5438-11th Street NE 

          City: Calgary 

          State_or_Province: Alberta 

          Postal_Code: T2E 7E9 

          Country: Canada 

        Contact_Voice_Telephone: 403-295-0694 

        Contact_Facsimile_Telephone: 403-295-2444 

        Contact_Electronic_Mail_Address: info@nwgeo.com 

    Distribution_Liability: 

      In no event shall the creators, custodians, or distributors of this 

      information be liable for any damages arising out of its use 

      (or the inability to use it). 

    Standard_Order_Process: 

      Digital_Form: 

        Digital_Transfer_Information: 

          Format_Name: GeoTIFF - Georeferenced Tagged Image File Format 

          Format_Information_Content: Color Infrared 

        Digital_Transfer_Option: 

          Offline_Option: 

            Offline_Media: CD-ROM 

            Recording_Format: ISO 9660 Mode 1 Level 2 Extensions 

      Fees: 

    Resource_Description: 

      n_4011151_ne_12_1_20060818_20070105.tif 

  Metadata_Reference_Information: 

    Metadata_Date: 20070118 

    Metadata_Contact: 

      Contact_Information: 

        Contact_Organization_Primary: 

          Contact_Organization: North West Group 
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        Contact_Address: 

          Address_Type: mailing and physical address 

          Address: Suite 212, 5438-11th Street NE 

          City: Calgary 

          State_or_Province: Alberta 

          Postal_Code: T2E 7E9 

          Country: Canada 

        Contact_Voice_Telephone: 403-295-0694 

    Metadata_Standard_Name: 

      Content Standard for Digital Geospatial Metadata 

    Metadata_Standard_Version: FGDC-STD-001-1998 
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